Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; 129: 104123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37875176

RESUMO

When hematopoietic cells are overwhelmed with ionizing radiation (IR) DNA damage, the alternative non-homologous end-joining (aNHEJ) repair pathway is activated to repair stressed replication forks. While aNHEJ can rescue cells overwhelmed with DNA damage, it can also mediate chromosomal deletions and fusions, which can cause mis-segregation in mitosis and resultant aneuploidy. We previously reported that a hematopoietic microRNA, miR-223-3p, normally represses aNHEJ. We found that miR-223-/- mice have increased survival of hematopoietic stem and progenitor cells (HSPCs) after sublethal IR. However, this came at the cost of significantly more genomic aberrancies, with miR-223-/- hematopoietic progenitors having increased metaphase aberrancies, including chromothripsis, and increased sequence abnormalities, especially deletions, which is consistent with aNHEJ. These data imply that when an HSPC is faced with substantial DNA damage, it may trade genomic damage for its own survival by choosing the aNHEJ repair pathway, and this choice is regulated in part by miR-223-3p.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Radiação Ionizante , Instabilidade Genômica
2.
Nucleic Acids Res ; 51(22): 12224-12241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37953292

RESUMO

BRCA1-deficient cells have increased IRE1 RNase, which degrades multiple microRNAs. Reconstituting expression of one of these, miR-4638-5p, resulted in synthetic lethality in BRCA1-deficient cancer cells. We found that miR-4638-5p represses expression of TATDN2, a poorly characterized member of the TATD nuclease family. We discovered that human TATDN2 has RNA 3' exonuclease and endonuclease activity on double-stranded hairpin RNA structures. Given the cleavage of hairpin RNA by TATDN2, and that BRCA1-deficient cells have difficulty resolving R-loops, we tested whether TATDN2 could resolve R-loops. Using in vitro biochemical reconstitution assays, we found TATDN2 bound to R-loops and degraded the RNA strand but not DNA of multiple forms of R-loops in vitro in a Mg2+-dependent manner. Mutations in amino acids E593 and E705 predicted by Alphafold-2 to chelate an essential Mg2+ cation completely abrogated this R-loop resolution activity. Depleting TATDN2 increased cellular R-loops, DNA damage and chromosomal instability. Loss of TATDN2 resulted in poor replication fork progression in the presence of increased R-loops. Significantly, we found that TATDN2 is essential for survival of BRCA1-deficient cancer cells, but much less so for cognate BRCA1-repleted cancer cells. Thus, we propose that TATDN2 is a novel target for therapy of BRCA1-deficient cancers.


Assuntos
Neoplasias , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Replicação do DNA , Instabilidade Genômica , Magnésio , MicroRNAs/genética , Neoplasias/genética , Estruturas R-Loop
3.
Mol Ther Nucleic Acids ; 33: 483-492, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37588683

RESUMO

Prime editing technologies enable precise genome editing without the caveats of CRISPR nuclease-based methods. Nonetheless, current approaches to identify and isolate prime-edited cell populations are inefficient. Here, we established a fluorescence-based system, prime-induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), for real-time enrichment of prime-edited cell populations. We demonstrated the broad utility of PINE-TREE for highly efficient introduction of substitutions, insertions, and deletions at various genomic loci. Finally, we employ PINE-TREE to rapidly and efficiently generate clonal isogenic human pluripotent stem cell lines, a cell type recalcitrant to genome editing.

4.
Ophthalmic Physiol Opt ; 43(5): 972-984, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37334937

RESUMO

PURPOSE: To survey paediatric eye care providers to identify current patterns of prescribing for hyperopia. METHODS: Paediatric eye care providers were invited, via email, to participate in a survey to evaluate current age-based refractive error prescribing practices. Questions were designed to determine which factors may influence the survey participant's prescribing pattern (e.g., patient's age, magnitude of hyperopia, patient's symptoms, heterophoria and stereopsis) and if the providers were to prescribe, how much hyperopic correction would they prescribe (e.g., full or partial prescription). The response distributions by profession (optometry and ophthalmology) were compared using the Kolmogorov-Smirnov cumulative distribution function test. RESULTS: Responses were submitted by 738 participants regarding how they prescribe for their hyperopic patients. Most providers within each profession considered similar clinical factors when prescribing. The percentages of optometrists and ophthalmologists who reported considering the factor often differed significantly. Factors considered similarly by both optometrists and ophthalmologists were the presence of symptoms (98.0%, p = 0.14), presence of astigmatism and/or anisometropia (97.5%, p = 0.06) and the possibility of teasing (8.3%, p = 0.49). A wide range of prescribing was observed within each profession, with some providers reporting that they would prescribe for low levels of hyperopia while others reported that they would never prescribe. When prescribing for bilateral hyperopia in children with age-normal visual acuity and no manifest deviation or symptoms, the threshold for prescribing decreased with age for both professions, with ophthalmologists typically prescribing 1.5-2 D less than optometrists. The threshold for prescribing also decreased for both optometrists and ophthalmologists when children had associated clinical factors (e.g., esophoria or reduced near visual function). Optometrists and ophthalmologists most commonly prescribed based on cycloplegic refraction, although optometrists most commonly prescribed based on both the manifest and cycloplegic refraction for children ≥7 years. CONCLUSION: Prescribing patterns for paediatric hyperopia vary significantly among eye care providers.


Assuntos
Astigmatismo , Hiperopia , Optometria , Erros de Refração , Criança , Humanos , Hiperopia/tratamento farmacológico , Midriáticos
5.
NAR Cancer ; 5(1): zcac044, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683914

RESUMO

Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.

6.
iScience ; 25(12): 105626, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36471805

RESUMO

Tumors with BRCA1 mutations have poor prognoses due to genomic instability. Yet this genomic instability has risks and BRCA1-deficient (def) cancer cells must develop pathways to mitigate these risks. One such risk is the accumulation of unfolded proteins in BRCA1-def cancers from increased mutations due to their loss of genomic integrity. Little is known about how BRCA1-def cancers survive their genomic instability. Here we show that BRCA1 is an E3 ligase in the endoplasmic reticulum (ER) that targets the unfolded protein response (UPR) stress sensors, Eukaryotic Translation Initiation Factor 2-alpha Kinase 3 (PERK) and Serine/Threonine-Protein Kinase/Endoribonuclease Inositol-Requiring Enzyme 1 (IRE1) for ubiquitination and subsequent proteasome-mediated degradation. When BRCA1 is mutated or depleted, both PERK and IRE1 protein levels are increased, resulting in a constitutively activated UPR. Furthermore, the inhibition of protein folding or UPR signaling markedly decreases the overall survival of BRCA1-def cancer cells. Our findings define a mechanism used by the BRCA1-def cancer cells to survive their increased unfolded protein burden which can be used to develop new therapeutic strategies to treat these cancers.

7.
STAR Protoc ; 3(3): 101632, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36035791

RESUMO

Here, we describe a protocol for a microcarrier (MC)-based, large-scale generation and cryopreservation of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes. We also detail steps to isolate these populations with a high degree of purity. Finally, we describe how to cryopreserve these cell types while maintaining high levels of viability and preserving cellular function post-thaw. For complete details on the use and execution of this protocol, please refer to Brookhouser et al. (2021).


Assuntos
Células-Tronco Pluripotentes Induzidas , Astrócitos , Diferenciação Celular , Células Cultivadas , Humanos , Neurônios
8.
PLoS One ; 16(7): e0252805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197491

RESUMO

Chemokines are small proteins that promote leukocyte migration during development, infection, and inflammation. We and others isolated the unique chemokine CCL21, a potent chemo-attractant for naïve T-cells, naïve B-cells, and immature dendritic cells. CCL21 has a 37 amino acid carboxy terminal extension that is distinct from the rest of the chemokine family, which is thought to anchor it to venule endothelium where the amino terminus can interact with its cognate receptor, CCR7. We and others have reported that venule endothelium expressing CCL21 plays a crucial role in attracting naïve immune cells to sites of antigen presentation. In this study we generated a series of monoclonal antibodies to the amino terminus of CCL21 in an attempt to generate an antibody that blocked the interaction of CCL21 with its receptor CCR7. We found one humanized clone that blocked naïve T-cell migration towards CCL21, while memory effector T-cells were less affected. Using this monoclonal antibody, we also demonstrated that CCL21 is expressed in the mucosal venule endothelium of the large majority of inflammatory bowel diseases (IBD), including Crohn's disease, ulcerative colitis, and also in celiac disease. This expression correlated with active IBD in 5 of 6 cases, whereas none of 6 normal bowel biopsies had CCL21 expression. This study raises the possibility that this monoclonal antibody could be used to diagnose initial or recurrent of IBD. Significantly, this antibody could also be used for therapeutic intervention in IBD by selectively interfering with recruitment of naïve immune effector cells to sites of antigen presentation, without harming overall memory immunity.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Quimiocina CCL21/imunologia , Doenças Inflamatórias Intestinais/diagnóstico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quimiotaxia/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Receptores CCR7/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
9.
J Pers Med ; 11(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923265

RESUMO

Interstitial Cystitis or Bladder Pain Syndrome (IC/BPS) is a heterogeneous condition characterized by elevated levels of inflammatory cytokines, IL-1ß, IL-6, IL-8, IL-10, TNF-α, and is associated with debilitating symptoms of pelvic pain and frequent urination. A standard of care for IC/BPS has not been established, and most patients must undergo a series of different treatment options, with potential for severe adverse events. Here, we report a patient with a 26-year history of IC/BPS following treatment with multiple therapies, including low doses of etodolac, amitriptyline and gabapentin, which she was unable to tolerate because of adverse effects, including headaches, blurred vision and cognitive impairment. The patient achieved a complete clinical remission with minimal adverse events after 16 cycles of N-acetylcysteine (NAC) intravenous (IV) infusions over a period of 5 months, and pro-inflammatory cytokine levels were reduced when compared to measurements taken at presentation. Personalized low dose NAC IV infusion therapy represents an effective, safe, anti-inflammatory therapy administered in the outpatient setting for IC/BPS, and warrants further investigation.

10.
Mol Psychiatry ; 26(10): 5715-5732, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33837271

RESUMO

Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aß) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aß is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.


Assuntos
Doença de Alzheimer , Apolipoproteínas E/genética , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
11.
Front Aging Neurosci ; 13: 813544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211003

RESUMO

Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.

12.
Cells ; 10(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375215

RESUMO

Chronic lymphocytic leukemia (CLL) accounts for 10% of hematologic malignancies. CLL is a malignancy of CD5+ B cells and it is characterized by the accumulation of small, mature-appearing neoplastic lymphocytes in the blood, bone marrow, and secondary lymphoid tissues. In the present case, a middle-aged female patient with poor prognosis unmutated IGHV CLL achieved cytogenetic and molecular remission with minimal adverse events following six cycles of low dose recombinant human IL-2 (rIL-2) in combination with low dose targeted venetoclax. Personalized low dose rIL-2 in combination with either lenalidomide or venetoclax mediates natural killer stimulation and is an effective non-toxic immunotherapy administered in the outpatient setting for poor prognosis CLL.


Assuntos
Antineoplásicos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Fatores Imunológicos/administração & dosagem , Interleucina-2/administração & dosagem , Leucemia Linfocítica Crônica de Células B/terapia , Sulfonamidas/administração & dosagem , Adenina/efeitos adversos , Adenina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica , Feminino , Humanos , Imunoterapia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Lenalidomida/efeitos adversos , Pessoa de Meia-Idade , Piperidinas/efeitos adversos , Medicina de Precisão , Prognóstico , Indução de Remissão
13.
ACS Biomater Sci Eng ; 6(6): 3477-3490, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32550261

RESUMO

Astrocytes comprise the most abundant cell type in the central nervous system (CNS) and play critical roles in maintaining neural tissue homeostasis. In addition, astrocyte dysfunction and death has been implicated in numerous neurological disorders such as multiple sclerosis, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). As such, there is much interest in using human pluripotent stem cell (hPSC)-derived astrocytes for drug screening, disease modeling, and regenerative medicine applications. However, current protocols for generation of astrocytes from hPSCs are limited by the use of undefined xenogeneic components and two-dimensional (2D) culture surfaces, which limits their downstream applications where large-quantities of cells generated under defined conditions are required. Here, we report the use of a completely synthetic, peptide-based substrate that allows for the differentiation of highly pure populations of astrocytes from several independent hPSC lines, including those derived from patients with neurodegenerative disease. This substrate, which we demonstrate is compatible with both conventional 2D culture formats and scalable microcarrier (MC)-based technologies, leads to the generation of cells that express high levels of canonical astrocytic markers as well as display properties characteristic of functionally mature cells including production of apolipoprotein E (ApoE), responsiveness to inflammatory stimuli, ability to take up amyloid-ß (Aß), and appearance of robust calcium transients. Finally, we show that these astrocytes can be cryopreserved without any loss of functionality. In the future, we anticipate that these methods will enable the development of bioprocesses for the production of hPSC-derived astrocytes needed for biomedical research and clinical applications.


Assuntos
Doenças Neurodegenerativas , Células-Tronco Pluripotentes , Astrócitos , Diferenciação Celular , Humanos , Peptídeos
14.
Optom Vis Sci ; 97(5): 324-331, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413003

RESUMO

SIGNIFICANCE: Vision screenings are conducted to detect significant refractive errors, amblyopia, and ocular diseases. Vision screening devices are desired to have high testability, sensitivity, and specificity. Spot has demonstrated high testability, but previous reports suggest that the Spot has low sensitivity for detecting amblyogenic hyperopia and moderate sensitivity for amblyogenic astigmatism. PURPOSE: This study assessed the concurrent validity of detecting amblyogenic refractive errors by the Spot (v.1.1.50; Welch Allyn Inc., Skaneateles Falls, NY) compared with cycloplegic retinoscopy. METHODS: A total of 475 subjects (24 to 96 months) were screened by Spot and then received a masked comprehensive examination. Sensitivity and specificity, Bland-Altman plot, receiver operating characteristic area under the curve, and paired t test were evaluated by comparing the results of the Spot (v1.1.50) using the manufacturer referral criteria with the results of the comprehensive examination using the 2013 American Association for Pediatric Ophthalmology and Strabismus criteria. RESULTS: The Spot (v.1.1.50) referred 107 subjects (22.53%) for the following: 18.73% (89/475) astigmatism, 4.63% (22/475) myopia, 0.42% (2/475) hyperopia, and 2.11% (10/475) anisometropia. The sensitivity and specificity of the Spot vision screener for detecting amblyogenic risk factors were 86.08% (95% confidence interval [CI], 76.45 to 92.84%) and 90.15% (95% CI, 86.78 to 92.90%). Areas under the curve were 0.906 (95% CI, 0.836 to 0.976) for hyperopia, 0.887 (95% CI, 0.803 to 0.972) for spherical equivalent, and 0.914 (95% CI, 0.866 to 0.962) for astigmatism. A modified hyperopia criteria cutoff of greater than +1.06 D improved the sensitivity from 25 to 80% with 90% specificity. The current cutoff criterion, greater than -1.75 D, for astigmatism seemed optimal. CONCLUSIONS: This study shows that the Spot vision screener accurately detects low spherical refractive errors and astigmatism. Lowering the hyperopia cutoff criteria from the current Spot screener referral criteria improves the sensitivity with desired (high) specificity.


Assuntos
Ambliopia/diagnóstico , Erros de Refração/diagnóstico , Seleção Visual/instrumentação , Ambliopia/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Curva ROC , Refração Ocular/fisiologia , Erros de Refração/fisiopatologia , Reprodutibilidade dos Testes , Retinoscopia/métodos , Sensibilidade e Especificidade
15.
DNA Repair (Amst) ; 86: 102769, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31887540

RESUMO

The integrity of cellular genome is continuously challenged by endogenous and exogenous DNA damaging agents. If DNA damage is not removed in a timely fashion the replisome may stall at DNA lesions, causing fork collapse and genetic instability. Base excision DNA repair (BER) is the most important pathway for the removal of oxidized or mono-alkylated DNA. While the main components of the BER pathway are well defined, its regulatory mechanism is not yet understood. We report here that the splicing factor ISY1 enhances apurinic/apyrimidinic endonuclease 1 (APE1) activity, the multifunctional enzyme in BER, by promoting its 5'-3' endonuclease activity. ISY1 expression is induced by oxidative damage, which would provide an immediate up-regulation of APE1 activity in vivo and enhance BER of oxidized bases. We further found that APE1 and ISY1 interact, and ISY1 enhances the ability of APE1 to recognize abasic sites in DNA. Using purified recombinant proteins, we reconstituted BER and demonstrated that ISY1 markedly promoted APE1 activity in both the short- and long-patch BER pathways. Our study identified ISY1 as a regulator of the BER pathway, which would be of physiological relevance where suboptimal levels of APE1 are present. The interaction of ISY1 and APE1 also establishes a connection between DNA damage repair and pre-mRNA splicing.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fatores de Processamento de RNA/metabolismo , Células A549 , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Estresse Oxidativo , Células PC-3 , Transdução de Sinais
16.
J AAPOS ; 23(5): 278.e1-278.e6, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31521849

RESUMO

PURPOSE: To evaluate the Spot Vision Screener in detecting targeted vision disorders compared to cycloplegic retinoscopy in children <3 years of age. METHODS: Children, ages 6 months to 36 months underwent vision screening using the Spot Vision Screener. Results were compared to results of comprehensive eye examinations. Validity of the Spot was evaluated by calculating the area under the curve (AUC); the receiver operating characteristics (ROC) were used to determine optimal sensitivity and specificity for detection of targeted vision disorders. RESULTS: A total of 249 children were included. The AUC for detecting targeted vision disorders as defined by the study specific criteria using the Spot was 0.790. Compared to cycloplegic retinoscopy, the Spot underestimated hyperopia by 1.02 D (95% CI, 0.86-1.17 D). For hyperopia ≥4.5 D spherical equivalent (n = 10), the mean difference between the Spot and cycloplegic retinoscopy was 3.46 D (95% CI, 1.95-4.98 D). In contrast, the Spot overestimated astigmatism compared to cycloplegic retinoscopy (-1.00 D vs -0.48 D; P < 0.001) by -0.52 D (95% CI, 0.43-0.62 D). CONCLUSIONS: The Spot Vision Screener showed good overall validity in detecting targeted vision disorders. It was within 0.5 D and 1 D of cycloplegic retinoscopy with regard to low hyperopia and astigmatism. Higher hyperopic spherical equivalent refractive errors showed larger differences in mean values between the Spot and cycloplegic retinoscopy.


Assuntos
Transtornos da Visão/diagnóstico , Seleção Visual/instrumentação , Anisometropia/diagnóstico , Área Sob a Curva , Astigmatismo/diagnóstico , Pré-Escolar , Feminino , Humanos , Hiperopia/diagnóstico , Lactente , Masculino , Miopia/diagnóstico , Curva ROC , Retinoscopia/métodos , Sensibilidade e Especificidade
17.
Proc Natl Acad Sci U S A ; 116(35): 17438-17443, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31395736

RESUMO

Defects in DNA repair give rise to genomic instability, leading to neoplasia. Cancer cells defective in one DNA repair pathway can become reliant on remaining repair pathways for survival and proliferation. This attribute of cancer cells can be exploited therapeutically, by inhibiting the remaining repair pathway, a process termed synthetic lethality. This process underlies the mechanism of the Poly-ADP ribose polymerase-1 (PARP1) inhibitors in clinical use, which target BRCA1 deficient cancers, which is indispensable for homologous recombination (HR) DNA repair. HR is the major repair pathway for stressed replication forks, but when BRCA1 is deficient, stressed forks are repaired by back-up pathways such as alternative nonhomologous end-joining (aNHEJ). Unlike HR, aNHEJ is nonconservative, and can mediate chromosomal translocations. In this study we have found that miR223-3p decreases expression of PARP1, CtIP, and Pso4, each of which are aNHEJ components. In most cells, high levels of microRNA (miR) 223-3p repress aNHEJ, decreasing the risk of chromosomal translocations. Deletion of the miR223 locus in mice increases PARP1 levels in hematopoietic cells and enhances their risk of unprovoked chromosomal translocations. We also discovered that cancer cells deficient in BRCA1 or its obligate partner BRCA1-Associated Protein-1 (BAP1) routinely repress miR223-3p to permit repair of stressed replication forks via aNHEJ. Reconstituting the expression of miR223-3p in BRCA1- and BAP1-deficient cancer cells results in reduced repair of stressed replication forks and synthetic lethality. Thus, miR223-3p is a negative regulator of the aNHEJ DNA repair and represents a therapeutic pathway for BRCA1- or BAP1-deficient cancers.


Assuntos
Proteína BRCA1/deficiência , Predisposição Genética para Doença , MicroRNAs/genética , Neoplasias/genética , Mutações Sintéticas Letais , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Reparo do DNA , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Instabilidade Genômica , Humanos , Reparo de DNA por Recombinação , Translocação Genética
18.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31465302

RESUMO

CD8+ tumor-infiltrating lymphocytes (TILs) correlate with relapse-free survival (RFS) in most cancer types, including breast cancer. However, subset composition, functional status, and spatial location of CD8+ TILs in relation to RFS in human breast tumors remain unclear. Spatial tissue analysis via quantitative immunofluorescence showed that infiltration of CD8+ T cells into cancer islands was more significantly associated with RFS than CD8+ T cell infiltration into either tumor stroma or total tumor. Localization into cancer islands within tumors is mediated by expression of the integrin CD103, which is a marker for tissue-resident memory T cells (TRMs). Analysis of fresh tumor samples revealed that CD8+ TRMs are functionally similar to other CD8+ TILs, suggesting that the basis of their protective effect is their spatial distribution rather than functional differences. Indeed, CD103+ TRMs, as compared with CD103-CD8+ TILs, are enriched within cancer islands, and CD8+ TRM proximity to cancer cells drives the association of CD8+ TIL densities with RFS. Together, these findings reveal the importance of cancer island-localized CD8+ TRMs in surveillance of the breast tumor microenvironment and as a critical determinant of RFS in patients with breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/fisiologia , Antígenos CD/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Citocinas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias alfa de Integrinas/metabolismo , Recidiva Local de Neoplasia
19.
Acta Biomater ; 74: 168-179, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29775730

RESUMO

Human pluripotent stem cell derived neural progenitor cells (hNPCs) have the unique properties of long-term in vitro expansion as well as differentiation into the various neurons and supporting cell types of the central nervous system (CNS). Because of these characteristics, hNPCs have tremendous potential in the modeling and treatment of various CNS diseases and disorders. However, expansion and neuronal differentiation of hNPCs in quantities necessary for these applications is not possible with current two dimensional (2-D) approaches. Here, we used a fully defined peptide substrate as the basis for a microcarrier (MC)-based suspension culture system. Several independently derived hNPC lines were cultured on MCs for multiple passages as well as efficiently differentiated to neurons. Finally, this MC-based system was used in conjunction with a low shear rotating wall vessel (RWV) bioreactor for the integrated, large-scale expansion and neuronal differentiation of hNPCs. Overall, this fully defined and scalable biomanufacturing system will facilitate the generation of hNPCs and their neuronal derivatives in quantities necessary for basic and translational applications. STATEMENT OF SIGNIFICANCE: In this work, we developed a microcarrier (MC)-based culture system that allows for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells (hNPCs) under defined conditions. In turn, this MC approach was implemented in a rotating wall vessel (RWV) bioreactor for the large-scale expansion and neuronal differentiation of hNPCs. This work is of significance as it overcomes current limitations of conventional two dimensional (2-D) culture systems to enable the generation of hNPCs and their neuronal derivatives in quantities required for downstream applications in disease modeling, drug screening, and regenerative medicine.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Neurais , Células-Tronco Pluripotentes , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
20.
Cancer Chemother Pharmacol ; 80(4): 861-867, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28756516

RESUMO

Malignant pleural mesotheliomas (MPM) are most often surgically unresectable, and they respond poorly to current chemotherapy and radiation therapy. Between 23 and 64% of malignant pleural mesothelioma have somatic inactivating mutations in the BAP1 gene. BAP1 is a homologous recombination (HR) DNA repair component found in the BRCA1/BARD1 complex. Similar to BRCA1/2 deficient cancers, mutation in the BAP1 gene leads to a deficient HR pathway and increases the reliance on other DNA repair pathways. We hypothesized that BAP1-mutant MPM would require PARP1 for survival, similar to the BRCA1/2 mutant breast and ovarian cancers. Therefore, we used the clinical PARP1 inhibitors niraparib and olaparib to assess whether they could induce synthetic lethality in MPM. Surprisingly, we found that all MPM cell lines examined, regardless of BAP1 status, were addicted to PARP1-mediated DNA repair for survival. We found that niraparib and olaparib exposure markedly decreased clonal survival in multiple MPM cell lines, with and without BAP1 mutations. This clonal cell death may be due to the extensive replication fork collapse and genomic instability that PARP1 inhibition induces in MPM cells. The requirement of MPM cells for PARP1 suggests that they may generally arise from defects in HR DNA repair. More importantly, these data demonstrate that the PARP1 inhibitors could be effective in the treatment of MPM, for which little effective therapy exists.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Células Clonais/citologia , Reparo do DNA/genética , Humanos , Indazóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma Maligno , Mutação , Ftalazinas/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Mutações Sintéticas Letais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...