Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 48: 120-130, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27989923

RESUMO

Despite therapeutic advances, neurodegenerative diseases and disorders remain some of the leading causes of mortality and morbidity in the United States. Therefore, cell-based therapies to replace lost or damaged neurons and supporting cells of the central nervous system (CNS) are of great therapeutic interest. To that end, human pluripotent stem cell (hPSC) derived neural progenitor cells (hNPCs) and their neuronal derivatives could provide the cellular 'raw material' needed for regenerative medicine therapies for a variety of CNS disorders. In addition, hNPCs derived from patient-specific hPSCs could be used to elucidate the underlying mechanisms of neurodegenerative diseases and identify potential drug candidates. However, the scientific and clinical application of hNPCs requires the development of robust, defined, and scalable substrates for their long-term expansion and neuronal differentiation. In this study, we rationally designed a vitronectin-derived peptide (VDP) that served as an adhesive growth substrate for the long-term expansion of several hNPC lines. Moreover, VDP-coated surfaces allowed for the directed neuronal differentiation of hNPC at levels similar to cells differentiated on traditional extracellular matrix protein-based substrates. Overall, the ability of VDP to support the long-term expansion and directed neuronal differentiation of hNPCs will significantly advance the future translational application of these cells in treating injuries, disorders, and diseases of the CNS.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Neurais/citologia , Neurônios/citologia , Peptídeos/farmacologia , Células-Tronco Pluripotentes/citologia , Vitronectina/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA