Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 6: 30784, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499025

RESUMO

The production of IL-21 by T follicular helper (Tfh) cells is vital in driving the germinal centre reaction and high affinity antibody formation. However, the degree of Tfh cell heterogeneity and function is not fully understood. We used a novel IL-21eGFP reporter mouse strain to analyze the diversity and role of Tfh cells. Through the analysis of GFP expression in lymphoid organs of IL-21eGFP mice, we identified a subpopulation of GFP(+), high IL-21 producing Tfh cells present only in Peyer's Patches. GFP(+)Tfh cells were found to be polyclonal and related to GFP(-)Tfh cells of Peyer's Patches in TCR repertoire composition and overall gene expression. Studies on the mechanisms of induction of GFP(+)Tfh cells demonstrated that they required the intestinal microbiota and a diverse repertoire of CD4(+) T cells and B cells. Importantly, ablation of GFP(+) cells resulted in a reduced frequency of Peyer's Patches IgG1 and germinal center B cells in addition to small but significant shifts in gut microbiome composition. Our work highlights the diversity among IL-21 producing CD4(+) Tfh cells, and the interrelationship between the intestinal bacteria and Tfh cell responses in the gut.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Microbioma Gastrointestinal , Centro Germinativo/imunologia , Interleucinas/genética , Nódulos Linfáticos Agregados/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Células Cultivadas , Centro Germinativo/microbiologia , Interleucinas/metabolismo , Camundongos , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/microbiologia , Baço/citologia , Baço/imunologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-28066722

RESUMO

Candida albicans is responsible for ~400,000 systemic fungal infections annually, with an associated mortality rate of 46-75%. The human gastrointestinal (GI) tract represents the largest natural reservoir of Candida species and is a major source of systemic fungal infections. However, the factors that control GI colonization by Candida species are not completely understood. We hypothesized that the fungal cell wall would play an important role in determining the competitive fitness of Candida species in the mammalian GI tract. To test this hypothesis, we generated a systematic collection of isogenic C. albicans cell wall mutants and measured their fitness in the mouse GI tract via quantitative competition assays. Whereas a large variation in competitive fitness was found among mutants, no correlation was observed between GI fitness and total levels of individual cell wall components. Similar results were obtained in a set of distantly-related Candida species, suggesting that total amounts of individual cell wall components do not determine the ability of fungi to colonize the GI tract. We then subjected this collection of Candida strains and species to an extensive quantitative phenotypic profiling in search for features that might be responsible for their differences in GI fitness, but found no association with the ability to grow in GI-mimicking and stressful environments or with in vitro and in vivo virulence. The most significant association with GI fitness was found to be the strength of signaling through the Dectin-1 receptor. Using a quantitative assay to measure the amount of exposed ß-glucan on the surface of fungal cells, we found this parameter, unlike total ß-glucan levels, to be strongly predictive of competitive fitness in the mouse GI tract. These data suggest that fungal cell wall architecture, more so than its crude composition, critically determines the ability of fungi to colonize the mammalian GI tract. In particular, recognition of exposed ß-glucan by Dectin-1 receptor appears to severely limit Candida GI fitness and hence represents a promising target to reduce fungal colonization in patients at risks of systemic candidiasis.


Assuntos
Candida albicans/química , Candida albicans/crescimento & desenvolvimento , Parede Celular/química , Trato Gastrointestinal/microbiologia , beta-Glucanas/análise , Animais , Lectinas Tipo C/metabolismo , Camundongos
4.
PLoS Genet ; 9(10): e1003852, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204288

RESUMO

Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches--ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape.


Assuntos
Padronização Corporal/genética , Proteínas de Homeodomínio/genética , Elementos Reguladores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Animais , Sítios de Ligação , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
5.
Genome Res ; 21(8): 1328-38, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21555364

RESUMO

Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50%-60%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.


Assuntos
RNA Mensageiro/genética , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Zigoto/metabolismo , Animais , Sequência de Bases , Genoma , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Análise de Sequência de RNA , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Genome Res ; 18(11): 1752-62, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18682548

RESUMO

Identification of lineage-specific innovations in genomic control elements is critical for understanding transcriptional regulatory networks and phenotypic heterogeneity. We analyzed, from an evolutionary perspective, the binding regions of seven mammalian transcription factors (ESR1, TP53, MYC, RELA, POU5F1, SOX2, and CTCF) identified on a genome-wide scale by different chromatin immunoprecipitation approaches and found that only a minority of sites appear to be conserved at the sequence level. Instead, we uncovered a pervasive association with genomic repeats by showing that a large fraction of the bona fide binding sites for five of the seven transcription factors (ESR1, TP53, POU5F1, SOX2, and CTCF) are embedded in distinctive families of transposable elements. Using the age of the repeats, we established that these repeat-associated binding sites (RABS) have been associated with significant regulatory expansions throughout the mammalian phylogeny. We validated the functional significance of these RABS by showing that they are over-represented in proximity of regulated genes and that the binding motifs within these repeats have undergone evolutionary selection. Our results demonstrate that transcriptional regulatory networks are highly dynamic in eukaryotic genomes and that transposable elements play an important role in expanding the repertoire of binding sites.


Assuntos
Elementos de DNA Transponíveis/genética , Evolução Molecular , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Sequência Conservada , DNA/genética , DNA/metabolismo , Humanos , Camundongos , Sequências Repetitivas de Ácido Nucleico , Homologia de Sequência do Ácido Nucleico
7.
Nucleic Acids Res ; 34(12): e84, 2006 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-16840528

RESUMO

The paired-end ditagging (PET) technique has been shown to be efficient and accurate for large-scale transcriptome and genome analysis. However, as with other DNA tag-based sequencing strategies, it is constrained by the current efficiency of Sanger technology. A recently developed multiplex sequencing method (454-sequencing) using picolitre-scale reactions has achieved a remarkable advance in efficiency, but suffers from short-read lengths, and a lack of paired-end information. To further enhance the efficiency of PET analysis and at the same time overcome the drawbacks of the new sequencing method, we coupled multiplex sequencing with paired-end ditagging (MS-PET) using modified PET procedures to simultaneously sequence 200,000 to 300,000 dimerized PET (diPET) templates, with an output of nearly half-a-million PET sequences in a single 4 h machine run. We demonstrate the utility and robustness of MS-PET by analyzing the transcriptome of human breast carcinoma cells, and by mapping p53 binding sites in the genome of human colorectal carcinoma cells. This combined sequencing strategy achieved an approximate 100-fold efficiency increase over the current standard for PET analysis, and furthermore enables the short-read-length multiplex sequencing procedure to acquire paired-end information from large DNA fragments.


Assuntos
Genômica/métodos , Análise de Sequência de DNA/métodos , Transcrição Gênica , Sítios de Ligação , Neoplasias da Mama/genética , Carcinoma/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Neoplasias Colorretais/genética , Feminino , Biblioteca Gênica , Genoma Humano , Humanos , Sitios de Sequências Rotuladas , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...