Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(5): 2602-2618, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246635

RESUMO

A hallmark of the anterior cingulate cortex (ACC) is its functional heterogeneity. Functional and imaging studies revealed its importance in the encoding of anxiety-related and social stimuli, but it is unknown how microcircuits within the ACC encode these distinct stimuli. One type of inhibitory interneuron, which is positive for vasoactive intestinal peptide (VIP), is known to modulate the activity of pyramidal cells in local microcircuits, but it is unknown whether VIP cells in the ACC (VIPACC) are engaged by particular contexts or stimuli. Additionally, recent studies demonstrated that neuronal representations in other cortical areas can change over time at the level of the individual neuron. However, it is not known whether stimulus representations in the ACC remain stable over time. Using in vivo Ca2+ imaging and miniscopes in freely behaving mice to monitor neuronal activity with cellular resolution, we identified individual VIPACC that preferentially activated to distinct stimuli across diverse tasks. Importantly, although the population-level activity of the VIPACC remained stable across trials, the stimulus-selectivity of individual interneurons changed rapidly. These findings demonstrate marked functional heterogeneity and instability within interneuron populations in the ACC. This work contributes to our understanding of how the cortex encodes information across diverse contexts and provides insight into the complexity of neural processes involved in anxiety and social behavior.


Assuntos
Giro do Cíngulo , Peptídeo Intestinal Vasoativo , Animais , Giro do Cíngulo/metabolismo , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Células Piramidais/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
2.
J Vis Exp ; (159)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32510510

RESUMO

As genome-wide association studies shed light on the heterogeneous genetic underpinnings of many neurological diseases, the need to study the contribution of specific genes to brain development and function increases. Relying on mouse models to study the role of specific genetic manipulations is not always feasible since transgenic mouse lines are quite costly and many novel disease-associated genes do not yet have commercially available genetic lines. Additionally, it can take years of development and validation to create a mouse line. In utero electroporation offers a relatively quick and easy method to manipulate gene expression in a cell-type specific manner in vivo that only requires developing a DNA plasmid to achieve a particular genetic manipulation. Bilateral in utero electroporation can be used to target large populations of frontal cortex pyramidal neurons. Combining this gene transfer method with behavioral approaches allows one to study the effects of genetic manipulations on the function of prefrontal cortex networks and the social behavior of juvenile and adult mice.


Assuntos
Comportamento Animal , Eletroporação/métodos , Técnicas Genéticas , Animais , Estudos de Viabilidade , Camundongos , Camundongos Transgênicos , Plasmídeos/genética
3.
PLoS Biol ; 18(1): e3000604, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935214

RESUMO

Schizophrenia is a severe mental disorder with an unclear pathophysiology. Increased expression of the immune gene C4 has been linked to a greater risk of developing schizophrenia; however, it is not known whether C4 plays a causative role in this brain disorder. Using confocal imaging and whole-cell electrophysiology, we demonstrate that overexpression of C4 in mouse prefrontal cortex neurons leads to perturbations in dendritic spine development and hypoconnectivity, which mirror neuropathologies found in schizophrenia patients. We find evidence that microglia-mediated synaptic engulfment is enhanced with increased expression of C4. We also show that C4-dependent circuit dysfunction in the frontal cortex leads to decreased social interactions in juvenile and adult mice. These results demonstrate that increased expression of the schizophrenia-associated gene C4 causes aberrant circuit wiring in the developing prefrontal cortex and leads to deficits in juvenile and adult social behavior, suggesting that altered C4 expression contributes directly to schizophrenia pathogenesis.


Assuntos
Complemento C4/genética , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Esquizofrenia/genética , Comportamento Social , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Comunicação Celular/genética , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/patologia , Regulação para Cima/genética
4.
Cereb Cortex ; 30(3): 1040-1055, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31403676

RESUMO

The cortical code that underlies perception must enable subjects to perceive the world at time scales relevant for behavior. We find that mice can integrate visual stimuli very quickly (<100 ms) to reach plateau performance in an orientation discrimination task. To define features of cortical activity that underlie performance at these time scales, we measured single-unit responses in the mouse visual cortex at time scales relevant to this task. In contrast to high-contrast stimuli of longer duration, which elicit reliable activity in individual neurons, stimuli at the threshold of perception elicit extremely sparse and unreliable responses in the primary visual cortex such that the activity of individual neurons does not reliably report orientation. Integrating information across neurons, however, quickly improves performance. Using a linear decoding model, we estimate that integrating information over 50-100 neurons is sufficient to account for behavioral performance. Thus, at the limits of visual perception, the visual system integrates information encoded in the probabilistic firing of unreliable single units to generate reliable behavior.


Assuntos
Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Estimulação Luminosa , Psicometria
5.
J Neurophysiol ; 115(5): 2658-71, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936980

RESUMO

Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions.


Assuntos
Potenciais Evocados Visuais , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Animais , Corpos Geniculados/citologia , Masculino , Ratos , Ratos Long-Evans , Vigília
6.
Nature ; 507(7492): 358-61, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24572358

RESUMO

How specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction-selective ganglion cells (DSGCs), are specialized for detecting motion along specific axes of the visual field. Despite extensive study of the retinal circuitry that endows DSGCs with their unique tuning properties, their downstream circuitry in the brain and thus their contribution to visual processing has remained unclear. In mice, several different types of DSGCs connect to the dorsal lateral geniculate nucleus (dLGN), the visual thalamic structure that harbours cortical relay neurons. Whether direction-selective information computed at the level of the retina is routed to cortical circuits and integrated with other visual channels, however, is unknown. Here we show that there is a di-synaptic circuit linking DSGCs with the superficial layers of the primary visual cortex (V1) by using viral trans-synaptic circuit mapping and functional imaging of visually driven calcium signals in thalamocortical axons. This circuit pools information from several types of DSGCs, converges in a specialized subdivision of the dLGN, and delivers direction-tuned and orientation-tuned signals to superficial V1. Notably, this circuit is anatomically segregated from the retino-geniculo-cortical pathway carrying non-direction-tuned visual information to deeper layers of V1, such as layer 4. Thus, the mouse harbours several functionally specialized, parallel retino-geniculo-cortical pathways, one of which originates with retinal DSGCs and delivers direction- and orientation-tuned information specifically to the superficial layers of the primary visual cortex. These data provide evidence that direction and orientation selectivity of some V1 neurons may be influenced by the activation of DSGCs.


Assuntos
Vias Neurais/fisiologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Axônios/fisiologia , Sinalização do Cálcio , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Células HEK293 , Humanos , Camundongos , Orientação/fisiologia , Vírus da Raiva/genética , Vírus da Raiva/fisiologia , Tálamo/citologia , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...