Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 20(3): 429-39, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22405002

RESUMO

2-Cys peroxiredoxins (Prxs) play two different roles depending on the physiological status of the cell. They are thioredoxin-dependent peroxidases under low oxidative stress and ATP-independent chaperones upon exposure to high peroxide concentrations. These alternative functions have been associated with changes in the oligomerization state from low-(LMW) to high-molecular-weight (HMW) species. Here we present the structures of Schistosoma mansoni PrxI in both states: the LMW decamer and the HMW 20-mer formed by two stacked decamers. The latter is the structure of a 2-Cys Prx chaperonic form. Comparison of the structures sheds light on the mechanism by which chemical stressors, such as high H(2)O(2) concentration and acidic pH, are sensed and translated into a functional switch in this protein family. We also propose a model to account for the in vivo formation of long filaments of stacked Prx rings.


Assuntos
Modelos Químicos , Modelos Moleculares , Peroxirredoxinas/química , Conformação Proteica , Schistosoma mansoni/química , Animais , Cristalografia por Raios X , Chaperonas Moleculares/química , Peroxidase/química
2.
PLoS One ; 6(10): e26903, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046402

RESUMO

Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30-35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg(2+), Ca(2+), Sr(2+), Ba(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and Cd(2+)). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1-586) and a C-terminal (587-752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn(2+) binding of the enzyme is also provided.


Assuntos
Cátions Bivalentes/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Methanosarcina/enzimologia , Proteínas Arqueais , Biocatálise , Domínio Catalítico , DNA Topoisomerases Tipo I/química , Dobramento de Proteína , Alinhamento de Sequência
3.
J Bacteriol ; 190(17): 5766-80, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18586938

RESUMO

The bacterial single-stranded DNA-binding protein (SSB) and the archaeal/eukaryotic functional homolog, replication protein A (RPA), are essential for most aspects of DNA metabolism. Structural analyses of the architecture of SSB and RPA suggest that they are composed of different combinations of a module called the oligonucleotide/oligosaccharide-binding (OB) fold. Members of the domains Bacteria and Eukarya, in general, contain one type of SSB or RPA. In contrast, organisms in the archaeal domain have different RPAs made up of different organizations of OB folds. Interestingly, the euryarchaeon Methanosarcina acetivorans harbors multiple functional RPAs named MacRPA1 (for M. acetivorans RPA 1), MacRPA2, and MacRPA3. Comparison of MacRPA1 with related proteins in the publicly available databases suggested that intramolecular homologous recombination might play an important role in generating some of the diversity of OB folds in archaeal cells. On the basis of this information, from a four-OB-fold-containing RPA, we engineered chimeric modules to create three-OB-fold-containing RPAs to mimic a novel form of RPA found in Methanococcoides burtonii and Methanosaeta thermophila. We further created two RPAs that mimicked the RPAs in Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus through fusions of modules from MacRPA1 and M. thermautotrophicus RPA. Functional studies of these engineered proteins suggested that fusion and shuffling of OB folds can lead to well-folded polypeptides with most of the known properties of SSB and RPAs. On the basis of these results, different models that attempt to explain how intramolecular and intermolecular homologous recombination can generate novel forms of SSB or RPAs are proposed.


Assuntos
Proteínas Arqueais/metabolismo , Oligonucleotídeos/metabolismo , Oligossacarídeos/metabolismo , Engenharia de Proteínas/métodos , Proteína de Replicação A/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Evolução Molecular , Polarização de Fluorescência , Methanococcaceae/genética , Methanococcaceae/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Methanosarcinaceae/genética , Methanosarcinaceae/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Replicação A/química , Proteína de Replicação A/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...