Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 275: 114076, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789139

RESUMO

ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems. AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS. MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 µm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source. RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 µg/ml and 7.43 µg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds. CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.


Assuntos
Antimaláricos/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Folhas de Planta/metabolismo , Vitex/química , Vitex/metabolismo , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/toxicidade , Chlorocebus aethiops , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Malária/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/toxicidade , Folhas de Planta/toxicidade , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Plantas Medicinais/toxicidade , Plasmodium falciparum/efeitos dos fármacos , Células Vero , Vitex/toxicidade
2.
ChemMedChem ; 14(4): 484-493, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30609264

RESUMO

Novel 4-amino-7-chloroquinoline-based 1,2,3-triazole hybrids were synthesised in good yields by CuI -catalysed Huisgen 1,3-dipolar cycloaddition reactions of 2-azido-N-(7-chloroquinolin-4-ylaminoalkyl)acetamides with various terminal alkynes. These new hybrids were screened in vitro against asexual blood stages of the chloroquine-sensitive 3D7 strain of P. falciparum. The most active compounds were further screened against asexual and sexual stages (gametocytes) of the chloroquine-resistant RKL-9 strain of P. falciparum. Although all compounds were less potent than chloroquine against the 3D7 strain, the three best compounds were appreciably more active than chloroquine against the RKL-9 strain, displaying IC50 values of <100 nm, with one of them having an IC50 of 2.94 nm. Further, the lead compounds were gametocytocidal with IC50 values in the micromolar range, and were observed to induce morphological deformations in mature gametocytes. Most compounds demonstrated little or no cytotoxicity and exhibited good selectivity indices. The most active compounds represent promising candidates for further evaluation of their schizonticidal and gametocytocidal potential.


Assuntos
Antimaláricos/química , Cloroquina/química , Plasmodium falciparum/crescimento & desenvolvimento , Triazóis/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Humanos , Concentração Inibidora 50 , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/patologia , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/uso terapêutico
3.
Artigo em Inglês | MEDLINE | ID: mdl-30224532

RESUMO

In a focused exploration, we designed, synthesized, and biologically evaluated chiral conjugated new chloroquine (CQ) analogues with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity (in vitro 50% inhibitory concentration, 56.98 nM for strain 3D7 and 97.76 nM for strain K1; selectivity index in vivo [up to at a dose of 12.5 mg/kg of body weight], 3,510) as a new lead antimalarial agent. Other compounds (compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c) also showed moderate activity against a CQ-sensitive strain (3D7) and superior activity against a CQ-resistant strain (K1) of Plasmodium falciparum Furthermore, we carried out docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of all in-house data sets (168 molecules) of chiral CQ analogues to explain the structure-activity relationships (SAR). Our new findings specify the significance of the H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against the 3D7 strain indicated the favorable and unfavorable sites of CQ analogues for incorporating steric, hydrophobic, and electropositive groups to improve the antimalarial activity.


Assuntos
Antimaláricos/síntese química , Cloroquina/análogos & derivados , Heme/química , Malária/tratamento farmacológico , Piperazinas/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Chlorocebus aethiops , Cloroquina/síntese química , Cloroquina/farmacologia , Desenho de Fármacos , Resistência a Medicamentos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/biossíntese , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Malária/mortalidade , Malária/parasitologia , Camundongos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium yoelii/efeitos dos fármacos , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Eletricidade Estática , Estereoisomerismo , Relação Estrutura-Atividade , Análise de Sobrevida , Células Vero
4.
Bioorg Chem ; 80: 204-211, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29940342

RESUMO

A series of short chain 4-aminoquinoline-imidazole derivatives have been synthesized in one pot two step multicomponent reaction using van leusen standard protocol. The diethylamine function of chloroquine is replaced by substituted imidazole derivatives containing tertiary terminal nitrogen. All the synthesized compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (K1) strains of Plasmodium falciparum. Some of the compounds (6, 8, 9 and 17) in the series exhibited comparable activity to CQ against K1 strain of P. falciparum. All the compounds displayed resistance factor between 0.09 and 4.57 as against 51 for CQ. Further, these analogues were found to form a strong complex with hematin and inhibit the ß-hematin formation, therefore these compounds act via heme polymerization target.


Assuntos
Aminoquinolinas/química , Antimaláricos/síntese química , Desenho de Fármacos , Imidazóis/química , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Resistência a Medicamentos/efeitos dos fármacos , Hemina/antagonistas & inibidores , Hemina/metabolismo , Imidazóis/síntese química , Imidazóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Células Vero
5.
Biochemistry ; 56(51): 6691-6699, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29182860

RESUMO

The unique occurrence of G-quadruplexes in the AT-rich genome of human malaria parasite Plasmodium falciparum provides hints about their critical roles in parasite survival, pathogenesis, and host immune evasion. An intriguing question is whether these noncanonical structures can serve as molecular targets for small molecule-based interventions against malaria. In this study, we have investigated the pharmacological targeting of G-quadruplexes for parasite inhibition. We observed that bisquinolinium derivatives of 1,8-naphthyridine and pyridine affected the stability and molecular recognition properties of G-quadruplexes in telomeric and subtelomeric regions in P. falciparum. Parasite inhibition and cytotoxicity assays revealed that these ligands effectively inhibit parasite growth with minimal toxic effects in human cells. G-quadruplex interacting ligands caused degeneration and shortening of parasite telomeres. Ligand-induced perturbations in telomere homeostasis also affected transcriptional state of the subtelomeric region harboring antigenic variation genes. Taken together, our results suggest that quadruplex-ligand interaction disturbs telomeric/subtelomeric chromatin organization and induces DNA damage that consequently leads to parasite death. Our findings also draw attention to the striking differences in telomere dynamics in the protozoan parasite and human host that can be exploited for selective targeting of the telomeric quadruplex of the parasite as a potential antimalarial strategy.


Assuntos
Antimaláricos/farmacologia , Quadruplex G/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Linhagem Celular , Dano ao DNA , Humanos , Concentração Inibidora 50 , Ligantes , Plasmodium falciparum/genética , Telômero/efeitos dos fármacos
6.
Eur J Med Chem ; 138: 1089-1105, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28763644

RESUMO

Syncarpamide 1, a norepinephrine alkaloid isolated from the leaves of Zanthoxylum syncarpum (Rutaceae) exhibited promising antiplasmodial activities against Plasmodium falciparum with reported IC50 values of 2.04 µM (D6 clone), 3.06 µM (W2 clone) and observed by us 3.90 µM (3D7 clone) and 2.56 µM (K1 clone). In continuation of our work on naturally occurring antimalarial compounds, synthesis of syncarpamide 1 and its enantiomer, (R)-2 using Sharpless asymmetric dihydroxylation as a key step has been accomplished. In order to study structure-activity-relationship (SAR) in detail, a library of 55 compounds (3-57), which are analogues/homologues of syncarpamide 1 were synthesized by varying the substituents on the aromatic ring, by changing the stereocentre at the C-7 and/or by varying the acid groups in the ester and/or amide side chain based on the natural product lead molecule and further assayed in vitro against 3D7 and K1 strains of P. falciparum to evaluate their antiplasmodial activities. In order to study the effect of position of functional groups on antiplasmodial activity profile, a regioisomer (S)-58 of syncarpamide 1 was synthesized however, it turned out to be inactive against both the strains. Two compounds, (S)-41 and its enantiomer, (R)-42 having 3,4,5-trimethoxy cinnamoyl groups as side chains showed better antiplasmodial activity with IC50 values of 3.16, 2.28 µM (3D7) and 1.78, 2.07 µM (K1), respectively than the natural product, syncarpamide 1. Three compounds (S)-13, (S)-17, (S)-21 exhibited antiplasmodial activities with IC50 values of 6.39, 6.82, 6.41 µM against 3D7 strain, 4.27, 7.26, 2.71 µM against K1 strain and with CC50 values of 147.72, 153.0, >200 µM respectively. The in vitro antiplasmodial activity data of synthesized library suggests that the electron density and possibility of resonance in both the ester and amide side chains increases the antiplasmodial activity as compared to the parent natural product 1. The natural product syncarpamide 1 and four analogues/homologues out of the synthesized library of 55, (S)-41, (R)-42, (S)-55 and (S)-57 were assayed in vivo assay against chloroquine-resistant P. yoelii (N-67) strain of Plasmodium. However, none of the five molecules, 1, (S)-41, (R)-42, (S)-55 and (S)-57 exhibited any promising in vivo antimalarial activity against P. yoelii (N-67) strain. Compounds 4, 6, 7 and 11 showed high cytotoxicities with CC50 values of 5.87, 5.08, 6.44 and 14.04 µM, respectively. Compound 6 was found to be the most cytotoxic as compared to the standard drug, podophyllotoxin whereas compounds 4 and 7 showed comparable cytotoxicities to podophyllotoxin.


Assuntos
Alcaloides/farmacologia , Antimaláricos/farmacologia , Norepinefrina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Alcaloides/química , Alcaloides/isolamento & purificação , Antimaláricos/química , Antimaláricos/isolamento & purificação , Relação Dose-Resposta a Droga , Estrutura Molecular , Norepinefrina/química , Norepinefrina/isolamento & purificação , Testes de Sensibilidade Parasitária , Rutaceae/química , Relação Estrutura-Atividade
7.
Phytomedicine ; 30: 1-9, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28545664

RESUMO

BACKGROUND: Flacourtia indica is especially popular among the various communities of many African countries where it is being used traditionally for the treatment of malaria. In our previous report, we have identified some phenolic glycosides from the aerial parts of F. indica as promising antiplasmodial agents under in vitro conditions. PURPOSE: Antimalarial bioprospection of F. indica derived phenolic glycoside in Swiss mice (in vivo) with special emphasis on its mode of action. METHODS: Chloroquine sensitive strain of Plasmodium falciparum was routinely cultured and used for the in vitro studies. The in vivo antimalarial potential of phenolic glycoside was evaluated against P. berghei in Swiss mice through an array of parameters viz., hematological, biochemical, chemo-suppression and mean survival time. RESULTS: 2-(6-benzoyl-ß-d-glucopyranosyloxy)-7-(1α, 2α, 6α-trihydroxy-3-oxocyclohex-4-enoyl)-5-hydroxybenzyl alcohol (CPG), a phenolic glycoside isolated from the aerial parts of F. indica was found to exhibit promising antiplasmodial activity by arresting the P. falciparum growth at the trophozoite stage. Spectroscopic investigations reveal that CPG possesses a strong binding affinity with free heme moieties. In addition, these interactions lead to the inhibition of heme polymerization in malaria parasite, augmenting oxidative stress, and delaying the rapid growth of parasite. Under in-vivo condition, CPG exhibited significant antimalarial activity against P. berghei at 50 and 75mg/kg body weight through chemo-suppression of parasitemia and ameliorating the parasite induced inflammatory and oxidative (hepatic) imbalance in the experimental mice. CONCLUSION: CPG was found to be a potential antimalarial constituent of F. indica with an explored mechanism of action, which also offers the editing choices for developing CPG based antimalarial chemotypes.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Glicosídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Salicaceae/química , Animais , Cloroquina/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Heme/metabolismo , Malária/tratamento farmacológico , Malária/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fenóis/uso terapêutico , Plantas Medicinais/química , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/metabolismo
8.
Parasitol Res ; 116(7): 1849-1854, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28502016

RESUMO

Present efforts have been made to establish a correlation between in vitro and in vivo antimalarial activity using MIC, IC50 and IC90 values against CQ-sensitive (3D7) and CQ-resistant (K1) strains of Plasmodium falciparum and in vivo activity against Plasmodium yoelii. The method of discriminant function analysis (DFA) was applied to analyze the data. It was observed that in vitro IC90 values against both 3D7 and K1 strains (p < 0.001) have strong correlation with in vivo curative activity. The respective IC50 and IC90 values of compounds, which cured mice (i.e., animals did not show recrudescence of parasitemia even after 60 days posttreatment), ranged between 3 and 14 nM and 14 and 186 nM against 3D7 and between 9 and 65 nM and 24 and 359 nM against the K1 strain of P. falciparum. Whereas the IC50 and IC90 values of compounds which exhibited in vivo suppressive activity in mice ranged between 10 and 307 nm and 61 and >965 nM, respectively, against 3D7 and 75 and >806 nm and 241 and >1232 nM against the K1 strain of P. falciparum. The findings suggest that IC90 values against both 3D7 and K1 strains (p < 0.02) are the main contributors for the prediction of in vivo curative activity of a new molecule. Apart from this, a reasonable correlation between MIC and IC50 values of compounds has also been established.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Malária Falciparum/parasitologia , Camundongos , Parasitemia/tratamento farmacológico
9.
Biomed Pharmacother ; 89: 761-771, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28273638

RESUMO

A clinical emergency stands due to the appearance of drug resistant Plasmodium strains necessitate novel and effective antimalarial chemotypes, where plants seem as the prime option, especially after the discovery of quinine and artemisinin. The present study was aimed towards bioprospecting leaves of Flueggea virosa for its antimalarial efficacy and active principles. Crude hydro-ethanolic extract along with solvent derived fractions were tested in vitro against Plasmodium falciparum CQ sensitive (3D7) and resistant (K1) strains, where all the fractions exhibited potential activity (IC50 values <10µg/mL) against both the strains. Interestingly, under in vivo conditions against P. berghei in Swiss mice, preferential chemo-suppression was recorded for crude hydro-ethanolic extract (77.38%) and ethyl acetate fraction (86.09%) at the dose of 500mg/kg body weight. Additionally, ethyl acetate fraction was found to be capable of normalizing the host altered pharmacological parameters and enhanced oxidative stress augmented during the infection. The bioactivity guided fractionation lead to the isolation of bergenin as a major and active constituent (IC50, 8.07±2.05µM) of ethyl acetate fraction with the inhibition of heme polymerization pathway of malaria parasite being one of the possible chemotherapeutic target. Furthermore, bergenin exhibited a moderate antimalarial activity against P. berghei and also ameliorated parasite induced systemic inflammation in host (mice). Safe toxicity profile elucidated through in vitro cytotoxicity and in silico ADME/T predications evidently suggest that bergenin possess drug like properties. Hence, the present study validates the traditional usage of F. indica as an antimalarial remedy and also insists for further chemical modifications of bergenin to obtain more effective antimalarial chemotypes.


Assuntos
Antimaláricos/farmacologia , Magnoliopsida/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/efeitos adversos , Antimaláricos/química , Benzopiranos/química , Cloroquina/farmacologia , Resistência a Medicamentos , Feminino , Macrófagos Peritoneais/efeitos dos fármacos , Malária/tratamento farmacológico , Masculino , Camundongos , Estrutura Molecular , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química
10.
Arch Pharm (Weinheim) ; 350(3-4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28207169

RESUMO

A series of substituted 1,2,4-trioxanes were synthesized and evaluated for their antimalarial potential, in silico ADME properties and cytotoxicity on neuronal cell lines. Among the 15 synthesized substituted 1,2,4-trioxanes, two compounds (compound 15, IC50 = 25.71 nM; compound 21, IC50 = 19.6 nM) exhibited promising in vitro antimalarial potential comparable to those of the existing drugs chloroquine and artemisinin. Both of these compounds were found to be nontoxic up to 20 µM concentration in neuronal PC-12 cells. Compound 21 may serve as an optimized lead compound because of its less in vitro toxicity and lower probability to cross the blood brain barrier.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Compostos Heterocíclicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
11.
Artigo em Inglês | MEDLINE | ID: mdl-27956423

RESUMO

A novel 4-aminoquinoline derivative [(S)-7-chloro-N-(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)-quinolin-4-amine triphosphate] exhibiting curative activity against chloroquine-resistant malaria parasites has been identified for preclinical development as a blood schizonticidal agent. The lead molecule selected after detailed structure-activity relationship (SAR) studies has good solid-state properties and promising activity against in vitro and in vivo experimental malaria models. The in vitro absorption, distribution, metabolism, and excretion (ADME) parameters indicate a favorable drug-like profile.


Assuntos
Aminoquinolinas/síntese química , Antimaláricos/síntese química , Malária/tratamento farmacológico , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Administração Oral , Aminoquinolinas/farmacologia , Animais , Antimaláricos/farmacologia , Chlorocebus aethiops , Cloroquina/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Heme/antagonistas & inibidores , Heme/metabolismo , Hemina/antagonistas & inibidores , Hemina/biossíntese , Concentração Inibidora 50 , Macaca mulatta , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium cynomolgi/crescimento & desenvolvimento , Plasmodium cynomolgi/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Relação Estrutura-Atividade , Células Vero
12.
Chem Biol Drug Des ; 89(6): 901-906, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27896925

RESUMO

A series of novel bisquinoline compounds comprising N1 -(7-chloroquinolin-4-yl) ethane-1,2-diamine and 7-chloro-N-(2-(piperazin-1-yl)ethyl)quinolin-4-amine connected with 7-chloro-4-aminoquinoline containing various amino acids is described. We have bio-evaluated the compounds against both chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum in vitro. Among the series, compounds 4 and 7 exhibited 1.8- and 10.6-fold superior activity as compared to chloroquine (CQ; IC50  = 0.255 ± 0.049 µm) against the K1 strain with IC50 values 0.137 ± 0.014 and 0.026 ± 0.007 µm, respectively. Furthermore, compound 7 also displayed promising activity against the 3D7 strain (IC50  = 0.024 ± 0.003 µm) of P. falciparum when compared to CQ. All the compounds in the series displayed resistance factor between 0.57 and 4.71 as against 51 for CQ. These results suggest that bisquinolines can be explored for further development as new antimalarial agents active against chloroquine-resistant P. falciparum.


Assuntos
Antimaláricos/síntese química , Desenho de Fármacos , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Quinolinas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Cloroquina/farmacologia , Concentração Inibidora 50 , Estrutura Molecular , Quinolinas/química
13.
Bioorg Chem ; 70: 74-85, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27908538

RESUMO

In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target.


Assuntos
Aminoquinolinas/química , Aminoquinolinas/uso terapêutico , Antimaláricos/química , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos , Aminoquinolinas/farmacologia , Animais , Antimaláricos/farmacologia , Chlorocebus aethiops , Descoberta de Drogas , Resistência a Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Camundongos , Testes de Sensibilidade Parasitária , Células Vero
14.
Indian J Med Res ; 146(5): 622-628, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29512604

RESUMO

Background & objectives: : The in vitro assays for susceptibility of Plasmodium falciparum to antimalarial drugs are important tools for monitoring drug resistance. During the present study, efforts were made to establish long-term continuous in vitro culture of Indian field isolates of P. falciparum and to determine their sensitivity to standard antimalarial drugs and antibiotics. Methods: Four (MZR-I, -II, -III and -IV) P. falciparum isolates were obtained from four patients who showed artemisinin-based combination therapy (ACT) from Mizoram, a north-eastern State of India, and characterized for their in vitro susceptibility to chloroquine diphosphate (CQ), quinine hydrochloride dehydrate, mefloquine, piperaquine, artemether, arteether, dihydro-artemisinin (DHA), lumefantrine and atovaquone and antibiotics, azithromycin and doxycycline. These patients showed ACT treatment failure. Two-fold serial dilutions of each drug were tested and the effect was evaluated using the malaria SYBR Green I fluorescence assay. K1 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) reference strains were used as controls. Results: Growth profile of all field isolates was identical to that of reference parasites. The IC50 values of all the drugs were also similar against field isolates and reference parasite strains, except K1, exhibited high IC50 value (275±12.5 nM) of CQ for which it was resistant. All field isolates exhibited higher IC50 values of CQ, quinine hydrochloride dihydrate and DHA compared to reference strains. The resistance index of field isolates with respect to 3D7 ranged between 260.55 and 403.78 to CQ, 39.83 and 46.42 to quinine, and 2.98 and 4.16 to DHA, and with respect to K1 strain ranged between 6.51 and 10.08, 39.26 and 45.75, and 2.65 and 3.71. MZR-I isolate exhibited highest resistance index. Interpretation & conclusions: As the increase in IC50 and IC90 values of DHA against field isolates of P. falciparum was not significant, the tolerance to DHA-piperaquine (PPQ) combination might be because of PPQ only. Further study is required on more number of such isolates to generate data for a meaningful conclusion.


Assuntos
Antibacterianos/uso terapêutico , Antimaláricos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Artemeter , Artemisininas/uso terapêutico , Atovaquona/uso terapêutico , Azitromicina/uso terapêutico , Cloroquina/análogos & derivados , Cloroquina/uso terapêutico , Doxiciclina/uso terapêutico , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Humanos , Índia/epidemiologia , Lumefantrina , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mefloquina/uso terapêutico , Plasmodium falciparum/patogenicidade , Quinina/uso terapêutico , Quinolinas/uso terapêutico
15.
ACS Cent Sci ; 2(10): 687-701, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27800551

RESUMO

The development of new antimalarial compounds remains a pivotal part of the strategy for malaria elimination. Recent large-scale phenotypic screens have provided a wealth of potential starting points for hit-to-lead campaigns. One such public set is explored, employing an open source research mechanism in which all data and ideas were shared in real time, anyone was able to participate, and patents were not sought. One chemical subseries was found to exhibit oral activity but contained a labile ester that could not be replaced without loss of activity, and the original hit exhibited remarkable sensitivity to minor structural change. A second subseries displayed high potency, including activity within gametocyte and liver stage assays, but at the cost of low solubility. As an open source research project, unexplored avenues are clearly identified and may be explored further by the community; new findings may be cumulatively added to the present work.

16.
J Org Chem ; 81(11): 4751-61, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27159615

RESUMO

An enantioselective synthesis of S-(-)-5,6-dihydrocanthin-4-ones via a triple cooperative catalysis-mediated domino reaction having a broad substrate scope is reported. The reaction between substituted 1-formyl-9H-ß-carbolines and terminal alkynes in the presence of catalytic amounts of Jorgensen-Hayashi catalyst, copper iodide, and Hunig base proceeded via a multicascade route, affording the title compounds in good yields and excellent ees with interesting mechanistic features. These compounds were assessed for in vitro antiplasmodial activity against P. falciparum strains. Additionally, 5,6-dihydrocanthin-4-ones are demonstrated to be a versatile precursor to different fused ß-carboline derivatives via simple synthetic transformations.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Carbolinas/síntese química , Carbolinas/farmacologia , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/farmacologia , Catálise , Cobre , Indicadores e Reagentes , Iodetos , Plasmodium falciparum/efeitos dos fármacos , Estereoisomerismo
17.
Parasitology ; 143(11): 1421-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27230403

RESUMO

Aiming to develop new artemisinin-based combination therapy (ACT) for malaria, antimalarial effect of a new series of pyrrolidine-acridine hybrid in combination with artemisinin derivatives was investigated. Synthesis, antimalarial and cytotoxic evaluation of a series of hybrid of 2-(3-(substitutedbenzyl)pyrrolidin-1-yl)alkanamines and acridine were performed and mode of action of the lead compound was investigated. In vivo pharmacodynamic properties (parasite clearance time, parasite reduction ratio, dose and regimen determination) against multidrug resistant (MDR) rodent malaria parasite and toxicological parameters (median lethal dose, liver function test, kidney function test) were also investigated. 6-Chloro-N-(4-(3-(3,4-dimethoxybenzyl)pyrrolidin-1-yl)butyl)-2-methoxyacridin-9-amine (15c) has shown a dose dependent haem bio-mineralization inhibition and was found to be the most effective and safe compound against MDR malaria parasite in Swiss mice model. It displayed best antimalarial potential with artemether (AM) in vitro as well as in vivo. The combination also showed favourable pharmacodynamic properties and therapeutic response in mice with established MDR malaria infection and all mice were cured at the determined doses. The combination did not show toxicity at the doses administered to the Swiss mice. Taken together, our findings suggest that compound 15c is a potential partner with AM for the ACT and could be explored for further development.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Pirrolidinas/farmacologia , Acridinas/farmacocinética , Acridinas/uso terapêutico , Acridinas/toxicidade , Animais , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Artemeter , Artemisininas/administração & dosagem , Artemisininas/farmacocinética , Artemisininas/uso terapêutico , Artemisininas/toxicidade , Resistência a Múltiplos Medicamentos , Quimioterapia Combinada , Dose Letal Mediana , Malária Falciparum/parasitologia , Camundongos , Parasitemia/tratamento farmacológico , Pirrolidinas/farmacocinética , Pirrolidinas/uso terapêutico , Pirrolidinas/toxicidade
18.
Intractable Rare Dis Res ; 5(1): 44-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26989649

RESUMO

Vaginal fibroids rarely exist as a primary vaginal tumor. Approximately 300 cases have been reported in the literature. Here we are reporting a rare case of giant vaginal fibromyoma. It was diagnosed as cervical fibroid polyp preoperatively but found to be vaginal fibromyoma peroperatively.

19.
Trop Doct ; 46(1): 43-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25979843
20.
Bioorg Med Chem Lett ; 25(20): 4657-63, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26338359

RESUMO

A new series of chloroquinoline-4H-chromene conjugates incorporating piperizine or azipane tethers were synthesized and their anti-malarial activity were evaluated against two Plasmodium falciparum strains namely 3D7 chloroquine sensitive (CQS) and K1 chloroquine resistant (CQR). Chloroquine was used as the standard and also reference for comparison. The conjugates exhibit intense UV absorption with λmax located at 342 nm (log ε=4.0), 254 nm (log ε=4.2), 223 nm (log ε=4.4) which can be used to spectrometrically track the molecules even in trace amounts. Among all the synthetic compounds, two molecules namely 6-nitro and N-piperazine groups incorporated 7d and 6-chloro and N-azapane incorporated 15b chloroquinoline-4H-chromene conjugates showed significant anti-malarial activity against two strains (3D7 and K1) of P. falciparum. These values are lesser than the values of standard antimalarial compound. Molecular docking results suggested that these two compounds showing strong binding affinity with P. falciparum lactate dehydrogenase (PfLDH) and also they occupy the co-factor position which indicated that they could be the potent inhibitors for dreadful disease malaria and specifically attack the glycolytic pathway in parasite for energy production.


Assuntos
Antimaláricos/farmacologia , Cloroquina/química , Cloroquina/farmacologia , Cromonas/química , Cromonas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Simulação por Computador , Relação Dose-Resposta a Droga , Malária/tratamento farmacológico , Malária/parasitologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/metabolismo , Relação Estrutura-Atividade , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...