Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 8: 628144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718434

RESUMO

Drug repurposing is also termed as drug repositioning or therapeutic switching. This method is applied to identify the novel therapeutic agents from the existing FDA approved clinically used drug molecules. It is considered as an efficient approach to develop drug candidates with new pharmacological activities or therapeutic properties. As the drug discovery is a costly, time-consuming, laborious, and highly risk process, the novel approach of drug repositioning is employed to increases the success rate of drug development. This strategy is more advantageous over traditional drug discovery process in terms of reducing duration of drug development, low-cost, highly efficient and minimum risk of failure. In addition to this, World health organization declared Coronavirus disease (COVID-19) as pandemic globally on February 11, 2020. Currently, there is an urgent need to develop suitable therapeutic agents for the prevention of the outbreak of COVID-19. So, various investigations were carried out to design novel drug molecules by utilizing different approaches of drug repurposing to identify drug substances for treatment of COVID-19, which can act as significant inhibitors against viral proteins. It has been reported that COVID-19 can infect human respiratory system by entering into the alveoli of lung via respiratory tract. So, the infection occurs due to specific interaction or binding of spike protein with angiotensin converting enzyme-2 (ACE-2) receptor. Hence, drug repurposing strategy is utilized to identify suitable drugs by virtual screening of drug libraries. This approach helps to determine the binding interaction of drug candidates with target protein of coronavirus by using computational tools such as molecular similarity and homology modeling etc. For predicting the drug-receptor interactions and binding affinity, molecular docking study and binding free energy calculations are also performed. The methodologies involved in drug repurposing can be categorized into three groups such as drug-oriented, target-oriented and disease or therapy-oriented depending on the information available related to quality and quantity of the physico-chemical, biological, pharmacological, toxicological and pharmacokinetic property of drug molecules. This review focuses on drug repurposing strategy applied for existing drugs including Remdesivir, Favipiravir, Ribavirin, Baraticinib, Tocilizumab, Chloroquine, Hydroxychloroquine, Prulifloxacin, Carfilzomib, Bictegravir, Nelfinavir, Tegobuvir and Glucocorticoids etc to determine their effectiveness toward the treatment of COVID-19.

2.
Indian J Pharm Sci ; 75(1): 67-75, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23901163

RESUMO

A combination of fusion and surface adsorption techniques was used to enhance the dissolution rate of cefuroxime axetil. Solid dispersions of cefuroxime axetil were prepared by two methods, namely fusion method using poloxamer 188 alone and combination of poloxamer 188 and Neusilin US2 by fusion and surface adsorption method. Solid dispersions were evaluated for solubility, phase solubility, flowability, compressibility, Kawakita analysis, Fourier transform-infrared spectra, differential scanning calorimetry, powder X-ray diffraction study, in vitro drug release, and stability study. Solubility studies showed 12- and 14-fold increase in solubility for solid dispersions by fusion method, and fusion and surface adsorption method, respectively. Phase solubility studies showed negative ΔG (0) tr values for poloxamer 188 at various concentrations (0, 0.25, 0.5, 0.75 and 1%) indicating spontaneous nature of solubilisation. Fourier transform-infrared spectra and differential scanning calorimetry spectra showed that drug and excipients are compatible with each other. Powder X-ray diffraction study studies indicated that presence of Neusilin US2 is less likely to promote the reversion of the amorphous cefuroxime axetil to crystalline state. in vitro dissolution studies, T50% and mean dissolution time have shown better dissolution rate for solid dispersions by fusion and surface adsorption method. Cefuroxime axetil release at 15 min (Q15) and DE15 exhibited 23- and 20-fold improvement in dissolution rate. The optimized solid dispersion formulation was stable for 6 months of stability study as per ICH guidelines. The stability was ascertained from drug content, in vitro dissolution, Fourier transform-infrared spectra and differential scanning calorimetry study. Hence, this combined approach of fusion and surface adsorption can be used successfully to improve the dissolution rate of poorly soluble biopharmaceutical classification system class II drug cefuroxime axetil.

3.
Drug Dev Ind Pharm ; 39(4): 548-60, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22512732

RESUMO

The objectives of present work was to design and characterize the rabeprazole sodium loaded microcapsules prepared by solvent evaporation technique using ethyl cellulose (EC) based various mucoadhesive polymer, followed by a triple coating with Eudragit L100. The Box-behnken design (BBD) was applied for optimization of formulations containing EC, HPMCK100M and Eudragit L100 as factors for selected responses like entrapment efficiency, mucoadhesive property and drug release in 24 h. The prepared microcapsules were characterized for particle size, drug content, swelling index, mucoadhesive strength, and in vivo antiulcer activity. FT-IR studies revealed that there was no drug-polymer interaction. SEM studies revealed that microcapsules were non-aggregated, spherical shape and smooth appearance. In vitro drug release data from microcapsules was fitted to different kinetic models to explain release profiles. The correlation coefficient value (r(2)) indicated that the drug release followed Higuchi model. Analysis of variance (ANOVA) showed significant difference in the release of drug from all formulations at p < 0.05 level. Accelerated stability study of optimized formulation (F4) upto 6 months showed there was no change in drug content and release characteristics during storage. In vivo antiulcer activity showed that the optimized microcapsules were able to protect rat stomach against ulcer formation vis-à-vis aqueous solution of the drug showed only negligible and minimum effect.


Assuntos
2-Piridinilmetilsulfinilbenzimidazóis/química , Antiulcerosos/química , Cápsulas/química , 2-Piridinilmetilsulfinilbenzimidazóis/farmacocinética , Análise de Variância , Animais , Antiulcerosos/farmacocinética , Cápsulas/farmacocinética , Celulose/análogos & derivados , Celulose/química , Celulose/farmacocinética , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Masculino , Rabeprazol , Ratos , Ratos Wistar , Comprimidos com Revestimento Entérico
4.
Colloids Surf B Biointerfaces ; 101: 414-23, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23010049

RESUMO

The current work aims to prepare the solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride (ONH) to enhance its oral bioavailability by improving its aqueous solubility and facilitating its absorption though lymphatic pathways. Preformulation studies including screening of excipients for solubility and pseudoternary phase diagrams suggested the suitability of Capmul MCM as lipid, Labrasol as surfactant, and Tween 20 as cosurfactant for preparation of self-emulsifying formulations. Preliminary composition of the SNEDDS formulations were selected from the phase diagrams and subjected to thermodynamic stability studies and dispersibility tests. The prepared liquid SNEDDS formulations were characterized for viscosity, refractive index, droplet size and zeta potential. The TEM study confirmed the formation of nanoemulsion following dilution of liquid SNEDDS. The optimized liquid SNEDDS were transformed into free flowing granules by adsorption on the porous carriers like Sylysia (350, 550, and 730) and Neusilin™ US2. Solid state characterization employing the FTIR, DSC and powder XRD studies indicated lack of any significant interaction of drug with the lipidic and emulsifying excipients, and porous carriers. In vitro drug release studies indicated faster solubilization of the drug by optimized SSNEGs (over 80% within 30 min) vis-à-vis the pure drug (only 35% within 30 min). In vivo pharmacokinetic studies in Wistar rats observed significant increase in C(max) (3.01-fold) and AUC (5.34-fold) using SSNEGs compared to pure drug, whereas no significant difference (p>0.1) was observed with the liquid SNEDDS. Thus, the present studies ratify the bioavailability enhancement potential of SSNEGs of ONH prepared using porous carriers.


Assuntos
Antieméticos/administração & dosagem , Antieméticos/farmacocinética , Ondansetron/administração & dosagem , Ondansetron/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antieméticos/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Química Farmacêutica , Emulsões , Excipientes , Feminino , Fígado/metabolismo , Sistema Linfático/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Nanopartículas , Ondansetron/química , Ratos , Ratos Wistar , Refratometria , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos , Termodinâmica , Viscosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...