Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 9(10)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32994185

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS) in humans. ALS is a neurodegenerative disease characterized by progressive motor neuron loss leading to paralysis and inevitable death in affected individuals. Using a gene replacement strategy to introduce disease mutations into the orthologous Drosophila sod1 (dsod1) gene, here, we characterize changes at the neuromuscular junction using longer-lived dsod1 mutant adults. Homozygous dsod1H71Y/H71Y or dsod1null/null flies display progressive walking defects with paralysis of the third metathoracic leg. In dissected legs, we assessed age-dependent changes in a single identified motor neuron (MN-I2) innervating the tibia levitator muscle. At adult eclosion, MN-I2 of dsod1H71Y/H71Y or sod1null/null flies is patterned similar to wild-type flies indicating no readily apparent developmental defects. Over the course of 10 days post-eclosion, MN-I2 shows an overall reduction in arborization with bouton swelling and loss of the post-synaptic marker discs-large (dlg) in mutant dsod1 adults. In addition, increases in polyubiquitinated proteins correlate with the timing and extent of MN-I2 changes. Because similar phenotypes are observed between flies homozygous for either dsod1H71Y or dsod1null alleles, we conclude these NMJ changes are mainly associated with sod loss-of-function. Together these studies characterize age-related morphological and molecular changes associated with axonal retraction in a Drosophila model of ALS that recapitulate an important aspect of the human disease.This article has an associated First Person interview with the first author of the paper.


Assuntos
Envelhecimento/genética , Esclerose Lateral Amiotrófica/etiologia , Proteínas de Drosophila/genética , Neurônios Motores/metabolismo , Degeneração Neural/genética , Superóxido Dismutase/genética , Envelhecimento/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Proteínas de Drosophila/metabolismo , Imunofluorescência , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Predisposição Genética para Doença , Homozigoto , Neurônios Motores/patologia , Mutação , Degeneração Neural/metabolismo , Junção Neuromuscular/metabolismo , Fenótipo , Superóxido Dismutase/metabolismo , Ubiquitinação
2.
Cell Rep ; 23(7): 1915-1921, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768192

RESUMO

Transcriptional modulation of the process of autophagy involves the transcription factor HLH-30/TFEB. In order to systematically determine the regulatory network of HLH-30/TFEB, we performed a genome-wide RNAi screen in C. elegans and found that silencing the nuclear export protein XPO-1/XPO1 enhances autophagy by significantly enriching HLH-30 in the nucleus, which is accompanied by proteostatic benefits and improved longevity. Lifespan extension via xpo-1 silencing requires HLH-30 and autophagy, overlapping mechanistically with several established longevity models. Selective XPO1 inhibitors recapitulated the effect on autophagy and lifespan observed by silencing xpo-1 and protected ALS-afflicted flies from neurodegeneration. XPO1 inhibition in HeLa cells enhanced TFEB nuclear localization, autophagy, and lysosome biogenesis without affecting mTOR activity, revealing a conserved regulatory mechanism for HLH-30/TFEB. Altogether, our study demonstrates that altering the nuclear export of HLH-30/TFEB can regulate autophagy and establishes the rationale of targeting XPO1 to stimulate autophagy in order to prevent neurodegeneration.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Núcleo Celular/metabolismo , Longevidade , Transporte Ativo do Núcleo Celular , Animais , Caenorhabditis elegans/metabolismo , Inativação Gênica , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA