Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(17): 7415-7424, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38578215

RESUMO

We found that a winter of abnormally low snowfall and numerous dust storms from eolian processes acting on exposed landscapes (including a major 4-day dust storm while onsite in May 2014) caused a cascade of impacts on the physical, chemical, and ecological functioning of the largest lake by volume in the High Arctic (Lake Hazen; Nunavut, Canada). MODIS imagery revealed that dust deposited in snowpacks on the lake's ice acted as light-absorbing impurities (LAIs), reducing surface reflectance and increasing surface temperatures relative to normal snowpack years, causing early snowmelt and drainage of meltwaters into the lake. LAIs remaining on the ice surface melted into the ice, causing premature candling and one of the earliest ice-offs and longest ice-free seasons on record for Lake Hazen. Meltwater inputs from snowpacks resulted in dilution of dissolved, and increased concentration of particulate bound, chemical species in Lake Hazen's upper water column. Spring inputs of nutrients increased both heterotrophy and algal productivity under the surface ice following snowmelt, with a net consumption of dissolved oxygen. As climate change continues to alter High Arctic temperatures and precipitation patterns, we can expect further changes in dust storm frequency and severity with corresponding impacts for freshwater ecosystems.


Assuntos
Poeira , Lagos , Estações do Ano , Regiões Árticas , Neve , Mudança Climática
2.
Environ Sci Process Impacts ; 24(1): 42-51, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34908076

RESUMO

We measured perfluoroalkyl substances (PFAS) in proglacial rivers and along a non-glacial freshwater continuum to investigate the role of snow and ice melting in their transport and fate within the Lake Hazen watershed (82° N). PFAS concentrations in glacial rivers were higher than those in surface waters of Lake Hazen, suggesting melting glacial ice increased PFAS concentrations in the lake. Stream water derived from subsurface soils along a non-glacial (permafrost thaw and snowmelt) freshwater continuum was a source of PFAS to Lake Hazen. Lower concentrations were found downstream of a meadow wetland relative to upstream locations along the continuum, suggesting PFAS partitioning into vegetation and soil as water flowed downstream towards Lake Hazen. Our estimations indicate that total PFAS inputs from glacial rivers and snowmelt were 1.6 kg (78%) and 0.44 kg (22%), respectively, into Lake Hazen, totalling 2.04 kg, and the output of PFAS from Lake Hazen was 0.64 kg. A positive net annual change of 1.4 kg indicates PFAS had notable residence times and/or net storage in Lake Hazen.


Assuntos
Fluorocarbonos , Pergelissolo , Regiões Árticas , Monitoramento Ambiental , Fluorocarbonos/análise , Lagos
3.
Nature ; 601(7891): 74-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912113

RESUMO

Anthropogenic releases of mercury (Hg)1-3 are a human health issue4 because the potent toxicant methylmercury (MeHg), formed primarily by microbial methylation of inorganic Hg in aquatic ecosystems, bioaccumulates to high concentrations in fish consumed by humans5,6. Predicting the efficacy of Hg pollution controls on fish MeHg concentrations is complex because many factors influence the production and bioaccumulation of MeHg7-9. Here we conducted a 15-year whole-ecosystem, single-factor experiment to determine the magnitude and timing of reductions in fish MeHg concentrations following reductions in Hg additions to a boreal lake and its watershed. During the seven-year addition phase, we applied enriched Hg isotopes to increase local Hg wet deposition rates fivefold. The Hg isotopes became increasingly incorporated into the food web as MeHg, predominantly from additions to the lake because most of those in the watershed remained there. Thereafter, isotopic additions were stopped, resulting in an approximately 100% reduction in Hg loading to the lake. The concentration of labelled MeHg quickly decreased by up to 91% in lower trophic level organisms, initiating rapid decreases of 38-76% of MeHg concentration in large-bodied fish populations in eight years. Although Hg loading from watersheds may not decline in step with lowering deposition rates, this experiment clearly demonstrates that any reduction in Hg loadings to lakes, whether from direct deposition or runoff, will have immediate benefits to fish consumers.


Assuntos
Monitoramento Ambiental , Recuperação e Remediação Ambiental , Peixes/metabolismo , Cadeia Alimentar , Lagos/química , Intoxicação por Mercúrio/veterinária , Mercúrio/análise , Animais , Isótopos/análise , Fatores de Tempo
4.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913236

RESUMO

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Reprodutibilidade dos Testes , Estações do Ano , Solo , Tundra , Incerteza
5.
Science ; 372(6541): 468, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926943
6.
Front Microbiol ; 11: 561194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133035

RESUMO

Temperatures in the Arctic are expected to increase dramatically over the next century, and transform high latitude watersheds. However, little is known about how microbial communities and their underlying metabolic processes will be affected by these environmental changes in freshwater sedimentary systems. To address this knowledge gap, we analyzed sediments from Lake Hazen, NU Canada. Here, we exploit the spatial heterogeneity created by varying runoff regimes across the watershed of this uniquely large high-latitude lake to test how a transition from low to high runoff, used as one proxy for climate change, affects the community structure and functional potential of dominant microbes. Based on metagenomic analyses of lake sediments along these spatial gradients, we show that increasing runoff leads to a decrease in taxonomic and functional diversity of sediment microbes. Our findings are likely to apply to other, smaller, glacierized watersheds typical of polar or high latitude ecosystems; we can predict that such changes will have far reaching consequences on these ecosystems by affecting nutrient biogeochemical cycling, the direction and magnitude of which are yet to be determined.

7.
Proc Biol Sci ; 287(1929): 20201185, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32576110

RESUMO

Lake Hazen, the High Arctic's largest lake, has received an approximately 10-fold increase in glacial meltwater since its catchment glaciers shifted from net mass gain to net mass loss in 2007 common era (CE), concurrent with recent warming. Increased glacial meltwater can alter the ecological functioning of recipient aquatic ecosystems via changes to nutrient budgets, turbidity and thermal regimes. Here, we examine a rare set of five high-resolution sediment cores collected in Lake Hazen between 1990 and 2017 CE to investigate the influence of increased glacial meltwater versus alterations to lake ice phenology on ecological change. Subfossil diatom assemblages in all cores show two major shifts over the past approximately 200 years including: (i) a proliferation of pioneering, benthic taxa at approximately 1900 CE from previously depauperate populations; and (ii) a rise in planktonic taxa beginning at approximately 1980 CE to present-day dominance. The topmost intervals from each sequentially collected core provide exact dates and demonstrate that diatom regime shifts occurred decades prior to accelerated glacial inputs. These data show that diatom assemblages in Lake Hazen are responding primarily to intrinsic lake factors linked to decreasing duration of lake ice and snow cover rather than to limnological impacts associated with increased glacial runoff.


Assuntos
Mudança Climática , Monitoramento Ambiental , Camada de Gelo , Lagos , Regiões Árticas , Diatomáceas , Ecossistema , Plâncton
8.
Environ Sci Technol ; 53(18): 10753-10762, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31412696

RESUMO

The delivery of perfluoroalkyl substances (PFAS) from snowpacks into Lake Hazen, located on Ellesmere Island (Nunavut, Canada, 82° N) indicates that annual atmospheric deposition is a major source of PFAS that undergo complex cycling in the High Arctic. Perfluoroalkyl carboxylic acids (PFCA) in snowpacks display odd-even concentration ratios characteristic of long-range atmospheric transport and oxidation of volatile precursors. Major ion analysis in snowpacks suggests that sea spray, mineral dust, and combustion aerosol are all relevant to the fate of PFAS in the Lake Hazen watershed. Distinct drifts of light and dark snow (enriched with light absorbing particles, LAPs) facilitate the study of particle loads on the fate of PFAS in the snowpack. Total PFAS (ΣPFAS, ng m-2) loads are lower in snowpacks enriched with LAPs and are attributed to reductions in snowpack albedo combined with enhanced post-depositional melting. Elevated concentrations of PFCA are observed in the top 5 m of the water column during snowmelt periods compared to ice-covered or ice-free periods. PFAS concentrations in deep waters of the Lake Hazen water column were consistent between snowmelt, ice-free, and ice-covered periods, which is ascribed to the delivery of dense and turbid glacier meltwaters mixing PFAS throughout the Lake Hazen water column. These observations highlight the underlying mechanisms in PFAS cycling in High Arctic Lakes particularly in the context of increased particle loads and melting.


Assuntos
Fluorocarbonos , Lagos , Regiões Árticas , Canadá , Monitoramento Ambiental , Nunavut
9.
Proc Natl Acad Sci U S A ; 116(36): 17690-17695, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427515

RESUMO

Carbon dioxide (CO2) emissions from freshwater ecosystems are almost universally predicted to increase with climate warming. Glacier-fed rivers and lakes, however, differ critically from those in nonglacierized catchments in that they receive little terrestrial input of organic matter for decomposition and CO2 production, and transport large quantities of easily mobilized comminuted sediments available for carbonate and silicate weathering reactions that can consume atmospheric CO2 We used a whole-watershed approach, integrating concepts from glaciology and limnology, to conclusively show that certain glacier-fed freshwater ecosystems are important and previously overlooked annual CO2 sinks due to the overwhelming influence of these weathering reactions. Using the glacierized Lake Hazen watershed (Nunavut, Canada, 82°N) as a model system, we found that weathering reactions in the glacial rivers actively consumed CO2 up to 42 km downstream of glaciers, and cumulatively transformed the High Arctic's most voluminous lake into an important CO2 sink. In conjunction with data collected at other proglacial freshwater sites in Greenland and the Canadian Rockies, we suggest that CO2 consumption in proglacial freshwaters due to glacial melt-enhanced weathering is likely a globally relevant phenomenon, with potentially important implications for regional annual carbon budgets in glacierized watersheds.

10.
Environ Pollut ; 252(Pt A): 289-295, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31158657

RESUMO

The Athabasca Oil Sands Region (AOSR) in Alberta, Canada, is an important source of atmospheric pollutants, such as aerosols, that have repercussions on both the climate and human health. We show that the mean freezing temperature of snow-borne particles from AOSR was elevated (-7.1 ±â€¯1.8 °C), higher than mineral dust which freezes at ∼ -15 °C and is recognized as one of the most relevant ice nuclei globally. Ice nucleation of nanosized snow samples indicated an elevated freezing ability (-11.6 ±â€¯2.0 °C), which was statistically much higher than snow-borne particles from downtown Montreal. AOSR snow had a higher concentration (∼2 orders of magnitude) of >100 nm particles than Montreal. Triple quadrupole ICP-(QQQ)-MS/MS analysis of AOSR and Montreal snow demonstrated that most concentrations of metals, including those identified as emerging nanoparticulate contaminants, were much more elevated in AOSR in contrast to Montreal: 34.1, 34.1, 16.6, 5.8, 0.3, 0.1, and 9.4 mg/m3 for Cr, Ni, Cu, As, Se, Cd, and Pb respectively, in AOSR and 1.3, 0.3, 2.0, <0.03, 0.1, 0.03, and 1.2 mg/m3 in Montreal snow. High-resolution Scanning Transmission Electron Microscopy/Energy-dispersive X-ray Spectroscopy (STEM-EDS) imaging provided evidence for various anthropogenic nano-materials, including carbon nanotubes resembling structures, in AOSR snow up to 7-25 km away from major oil sands upgrading facilities. In summary, particles characterized as coming from oil sands are more efficient at ice nucleation. We discuss the potential impacts of AOSR emissions on atmospheric and microphysical processes (ice nucleation and precipitation) both locally and regionally.


Assuntos
Poluição do Ar/análise , Monitoramento Ambiental/métodos , Nanopartículas Metálicas/análise , Nanotubos de Carbono/análise , Neve/química , Aerossóis/análise , Alberta , Poeira/análise , Gelo , Microscopia Eletrônica de Transmissão e Varredura , Campos de Petróleo e Gás , Tamanho da Partícula , Espectrometria por Raios X , Espectrometria de Massas em Tandem
11.
Environ Sci Technol ; 53(14): 8017-8026, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31250626

RESUMO

Mercury (Hg) is a global pollutant released from both natural and human sources. Here we compare long-term records of wet deposition loadings of total Hg (THg) in the open to dry deposition loadings of THg in throughfall and litterfall under four boreal mixedwood canopy types at the remote Experimental Lakes Area (ELA) in Northwestern Ontario, Canada. We also present long-term records of atmospheric concentrations of gaseous elemental (GEM), gaseous oxidized (GOM), and particle bound (PBM) Hg measured at the ELA. We show that dry THg loadings in throughfall and litterfall are 2.7 to 6.1 times greater than wet THg loadings in the open. GEM concentrations showed distinct monthly and daily patterns, correlating positively in spring and summer with rates of gross ecosystem productivity and respiration. GOM and PBM concentrations were less variable throughout the year but were highest in the winter, when concentrations of anthropogenically sourced particles and gases were also high. Forest fires, Arctic air masses, and road salt also impacted GEM, GOM, and PBM concentrations at the ELA. A nested GEOS-Chem simulation for the ELA region produced a dry/wet deposition ratio of >5, suggesting that the importance of dry deposition in forested regions can be reasonably modeled by existing schemes for trace gases.


Assuntos
Poluentes Atmosféricos , Mercúrio , Ecossistema , Monitoramento Ambiental , Humanos , Lagos , Ontário
12.
Sci Total Environ ; 647: 1604-1610, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180364

RESUMO

Tailings ponds created during industrial bitumen extraction from the Athabasca Oil Sands Region (AOSR), Alberta, Canada, have been shown to contain numerous contaminants, such as polycyclic aromatic compounds and naphthenic acids, and to slowly leak into adjacent ground and surface waters. Despite elevated concentrations of total mercury (THg) in nearby Athabasca River waters downstream of the AOSR developments, to date there are no published studies of THg or methylmercury (MeHg; a potent neurotoxin) in the AOSR tailings ponds. Here we present concentrations of THg and MeHg, as well as various water chemistry parameters, within four AOSR tailings ponds. Concentrations of SO42-, NH3, Na, and Cl were elevated in tailings ponds relative to nearby freshwaters. Surface water concentrations of THg (filtered: 0.15-0.57 ng/L) and MeHg (unfiltered: <0.02-0.53 ng/L; filtered: <0.02-0.32 ng/L), though, were generally low in the tailings ponds, with the highest concentrations observed in the oldest pond. In the mature fine tailings that settle out in the ponds, concentrations of THg (37.0-197 ng/g) and MeHg (0.10-0.52 ng/g) were also low, with the highest concentrations again in the oldest pond. We calculated that if all the dissolved THg and MeHg potentially leaking annually from the tailings ponds entered the nearby Athabasca River, river THg and MeHg concentrations would increase by only 0.01% and 0.03%, respectively. Overall, these ponds are likely not significant sources of THg or MeHg to nearby ground and surface waters, although due to the potential for Hg methylation to occur in the ponds themselves, other tailings ponds in the AOSR should be monitored to ensure that concentrations of MeHg in them are also low.

13.
Environ Sci Technol ; 52(24): 14099-14109, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30474969

RESUMO

Retrogressive thaw slumps (RTSs) are thermokarst features created by the rapid thaw of ice-rich permafrost, and can mobilize vast quantities of sediments and solutes downstream. However, the effect of slumping on downstream concentrations and yields of total mercury (THg) and methylmercury (MeHg) is unknown. Fluvial concentrations of THg and MeHg downstream of RTSs on the Peel Plateau (Northwest Territories, Canada) were up to 2 orders of magnitude higher than upstream, reaching concentrations of 1,270 ng L-1 and 7 ng L-1, respectively, the highest ever measured in uncontaminated sites in Canada. MeHg concentrations were particularly elevated at sites downstream of RTSs where debris tongues dammed streams to form reservoirs where microbial Hg methylation was likely enhanced. However, > 95% of the Hg downstream was typically particle-bound and potentially not readily bioavailable. Mean open-water season yields of THg (610 mg km-2 d-1) and MeHg (2.61 mg km-2 d-1) downstream of RTSs were up to an order of magnitude higher than those for the nearby large Yukon, Mackenzie and Peel rivers. We estimate that ∼5% of the Hg stored for centuries or millennia in northern permafrost soils (88 Gg) is susceptible to release into modern-day Hg biogeochemical cycling from further climate changes and thermokarst formation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Regiões Árticas , Canadá , Monitoramento Ambiental , Territórios do Noroeste , Yukon
14.
Front Microbiol ; 9: 1138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922252

RESUMO

The Arctic is undergoing rapid environmental change, potentially affecting the physicochemical constraints of microbial communities that play a large role in both carbon and nutrient cycling in lacustrine environments. However, the microbial communities in such Arctic environments have seldom been studied, and the drivers of their composition are poorly characterized. To address these gaps, we surveyed the biologically active surface sediments in Lake Hazen, the largest lake by volume north of the Arctic Circle, and a small lake and shoreline pond in its watershed. High-throughput amplicon sequencing of the 16S rRNA gene uncovered a community dominated by Proteobacteria, Bacteroidetes, and Chloroflexi, similar to those found in other cold and oligotrophic lake sediments. We also show that the microbial community structure in this Arctic polar desert is shaped by pH and redox gradients. This study lays the groundwork for predicting how sediment microbial communities in the Arctic could respond as climate change proceeds to alter their physicochemical constraints.

15.
Nat Commun ; 9(1): 1290, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599477

RESUMO

Using a whole-watershed approach and a combination of historical, contemporary, modeled and paleolimnological datasets, we show that the High Arctic's largest lake by volume (Lake Hazen) has succumbed to climate warming with only a ~1 °C relative increase in summer air temperatures. This warming deepened the soil active layer and triggered large mass losses from the watershed's glaciers, resulting in a ~10 times increase in delivery of glacial meltwaters, sediment, organic carbon and legacy contaminants to Lake Hazen, a >70% decrease in lake water residence time, and near certainty of summer ice-free conditions. Concomitantly, the community assemblage of diatom primary producers in the lake shifted dramatically with declining ice cover, from shoreline benthic to open-water planktonic species, and the physiological condition of the only fish species in the lake, Arctic Char, declined significantly. Collectively, these changes place Lake Hazen in a biogeochemical, limnological and ecological regime unprecedented within the past ~300 years.

16.
Environ Sci Technol ; 52(2): 531-540, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29198105

RESUMO

Snowpacks in the Alberta Oil Sands Region (AOSR) of Canada contain elevated loadings of methylmercury (MeHg; a neurotoxin that biomagnifies through foodwebs) due to oil sands related activities. At sites ranging from 0 to 134 km from the major AOSR upgrading facilities, we examined sources of MeHg by quantifying potential rates of MeHg production in snowpacks and melted snow using mercury stable isotope tracer experiments, as well as quantifying concentrations of MeHg on particles in snowpacks (pMeHg). At four sites, methylation rate constants were low in snowpacks (km = 0.001-0.004 d-1) and nondetectable in melted snow, except at one site (km = 0.0007 d-1). The ratio of methylation to demethylation varied between 0.3 and 1.5, suggesting that the two processes are in balance and that in situ production is unlikely an important net source of MeHg to AOSR snowpacks. pMeHg concentrations increased linearly with distance from the upgraders (R2 = 0.71, p < 0.0001); however, snowpack total particle and pMeHg loadings decreased exponentially over this same distance (R2 = 0.49, p = 0.0002; R2 = 0.56, p < 0.0001). Thus, at near-field sites, total MeHg loadings in snowpacks were high due to high particle loadings, even though particles originating from industrial activities were not MeHg rich compared to those at remote sites. More research is required to identify the industrial sources of snowpack particles in the AOSR.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Alberta , Monitoramento Ambiental , Metilação , Campos de Petróleo e Gás
17.
Environ Sci Technol ; 50(10): 5313-9, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27095340

RESUMO

Methylmercury is one of the more toxic forms of mercury (Hg), the biomagnification of which is prevalent in the Arctic where apex predators such as polar bears (Ursus maritimus) can carry high loads. The maternal transfer of contaminants to offspring is a concern, as offspring may be particularly sensitive to the effects of environmental pollutants during early development. However, few studies of polar bears report on Hg in dependent young. We examined hair total Hg (THg) concentrations in 24 polar bear family groups in western Hudson Bay: mother, cub-of-the-year (COY), yearling, and 2 year old. THg concentrations increased with bear age, with COYs having lower concentrations than other offspring groups (p ≤ 0.008). Using AICc-based regression models, we found maternal THg to be positively related to body condition and litter size, while overall offspring THg was positively related to maternal body condition in addition to being dependent on the sex and age of the offspring. COY THg concentrations were positively related to maternal THg while also depending on the sex of the offspring. Considering our results, future studies in polar bear ecotoxicology are encouraged to include offspring of different ages and sexes.


Assuntos
Mercúrio , Ursidae , Animais , Baías , Cabelo/química , Poluentes Químicos da Água
18.
Proc Natl Acad Sci U S A ; 113(3): 526-31, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26729866

RESUMO

Observations of elemental mercury (Hg(0)) at sites in North America and Europe show large decreases (∼ 1-2% y(-1)) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (<1% y(-1)). These decreases are inconsistent with current global emission inventories indicating flat or increasing emissions over that period. However, the inventories have three major flaws: (i) they do not account for the decline in atmospheric release of Hg from commercial products; (ii) they are biased in their estimate of artisanal and small-scale gold mining emissions; and (iii) they do not properly account for the change in Hg(0)/Hg(II) speciation of emissions from coal-fired utilities after implementation of emission controls targeted at SO2 and NOx. We construct an improved global emission inventory for the period 1990 to 2010 accounting for the above factors and find a 20% decrease in total Hg emissions and a 30% decrease in anthropogenic Hg(0) emissions, with much larger decreases in North America and Europe offsetting the effect of increasing emissions in Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg(0) concentrations and in Hg(II) wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Atmosfera/química , Atividades Humanas , Internacionalidade , Mercúrio/análise , Carvão Mineral , Humanos , Estados Unidos
19.
Glob Chang Biol ; 22(3): 1185-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26279166

RESUMO

High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near-zero sink of atmospheric CO2 (NEE: -0.3 ± 13.5 g C m(-2) ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3 ± 20.0 g C m(-2) ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on-site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate-related changes to productivity on polar semideserts may be restricted.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/análise , Mudança Climática , Ecossistema , Regiões Árticas , Nunavut , Estações do Ano
20.
Environ Sci Technol ; 49(1): 223-32, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25437177

RESUMO

Our understanding of the biogeochemical cycling of monomethylmercury (MMHg) in the Arctic is incomplete because atmospheric sources and sinks of MMHg are still unclear. We sampled air in the Canadian Arctic marine boundary layer to quantify, for the first time, atmospheric concentrations of methylated Hg species (both MMHg and dimethylmercury (DMHg)), and, estimate the importance of atmospheric deposition as a source of MMHg to Arctic land- and sea-scapes. Overall atmospheric MMHg and DMHg concentrations (mean ± SD) were 2.9 ± 3.6 and 3.8 ± 3.1 (n = 37) pg m(-3), respectively. Concentrations of methylated Hg species in the marine boundary layer varied significantly among our sites, with a predominance of MMHg over Hudson Bay (HB), and DMHg over Canadian Arctic Archipelago (CAA) waters. We concluded that DMHg is of marine origin and that primary production rate and sea-ice cover are major drivers of its concentration in the Canadian Arctic marine boundary layer. Summer wet deposition rates of atmospheric MMHg, likely to be the product of DMHg degradation in the atmosphere, were estimated at 188 ± 117.5 ng m(-2) and 37 ± 21.7 ng m(-2) for HB and CAA, respectively, sustaining MMHg concentrations available for biomagnification in the pelagic food web.


Assuntos
Poluentes Atmosféricos/análise , Camada de Gelo/química , Compostos de Metilmercúrio/análise , Regiões Árticas , Atmosfera , Canadá , Cadeia Alimentar , Mercúrio/análise , Estações do Ano , Água do Mar , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...