Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 23(2): 263-270, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28044064

RESUMO

Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic influences between these clinical conditions and impairments in social communication depends on the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth (Avon Longitudinal Study of Parents and Children, N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic influences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors influencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic influences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptoms.


Assuntos
Transtorno do Espectro Autista/genética , Esquizofrenia/genética , Comportamento Verbal/fisiologia , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Comunicação , Feminino , Estudo de Associação Genômica Ampla , Humanos , Idioma , Estudos Longitudinais , Masculino , Herança Multifatorial/genética , Fatores de Risco , Esquizofrenia/fisiopatologia , Comportamento Social
2.
Genes Brain Behav ; 12(8): 792-801, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24024963

RESUMO

Written and verbal languages are neurobehavioral traits vital to the development of communication skills. Unfortunately, disorders involving these traits-specifically reading disability (RD) and language impairment (LI)-are common and prevent affected individuals from developing adequate communication skills, leaving them at risk for adverse academic, socioeconomic and psychiatric outcomes. Both RD and LI are complex traits that frequently co-occur, leading us to hypothesize that these disorders share genetic etiologies. To test this, we performed a genome-wide association study on individuals affected with both RD and LI in the Avon Longitudinal Study of Parents and Children. The strongest associations were seen with markers in ZNF385D (OR = 1.81, P = 5.45 × 10(-7) ) and COL4A2 (OR = 1.71, P = 7.59 × 10(-7) ). Markers within NDST4 showed the strongest associations with LI individually (OR = 1.827, P = 1.40 × 10(-7) ). We replicated association of ZNF385D using receptive vocabulary measures in the Pediatric Imaging Neurocognitive Genetics study (P = 0.00245). We then used diffusion tensor imaging fiber tract volume data on 16 fiber tracts to examine the implications of replicated markers. ZNF385D was a predictor of overall fiber tract volumes in both hemispheres, as well as global brain volume. Here, we present evidence for ZNF385D as a candidate gene for RD and LI. The implication of transcription factor ZNF385D in RD and LI underscores the importance of transcriptional regulation in the development of higher order neurocognitive traits. Further study is necessary to discern target genes of ZNF385D and how it functions within neural development of fluent language.


Assuntos
Dislexia/genética , Estudo de Associação Genômica Ampla , Transtornos do Desenvolvimento da Linguagem/genética , Fatores de Transcrição/metabolismo , Estudos de Casos e Controles , Córtex Cerebral/fisiologia , Criança , Colágeno Tipo IV/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único , Sulfotransferases/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...