Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(12): e2219950120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913567

RESUMO

High areal capacitance for a practical supercapacitor electrode requires both large mass loading and high utilization efficiency of electroactive materials, which presents a great challenge. Herein, we demonstrated the unprecedented synthesis of superstructured NiMoO4@CoMoO4 core-shell nanofiber arrays (NFAs) on a Mo-transition-layer-modified nickel foam (NF) current collector as a new material, achieving the synergistic combination of highly conductive CoMoO4 and electrochemical active NiMoO4. Moreover, this superstructured material exhibited a large gravimetric capacitance of 1,282.2 F/g in 2 M KOH with a mass loading of 7.8 mg/cm2, leading to an ultrahigh areal capacitance of 10.0 F/cm2 that is larger than any reported values of CoMoO4 and NiMoO4 electrodes. This work provides a strategic insight for rational design of electrodes with high areal capacitances for supercapacitors.

2.
J Am Chem Soc ; 145(9): 5114-5124, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848504

RESUMO

Palladium-silver-based alloy catalysts have a great potential for CO-free hydrogen production from formic acid for fuel cell applications. However, the structural factors affecting the selectivity of formic acid decomposition are still debated. Herein, the decomposition pathways of formic acid on Pd-Ag alloys with different atomic configurations have been investigated to identify the alloy structures yielding high H2 selectively. Several PdxAg1-x surface alloys with various compositions were generated on a Pd(111) single crystal; their atomic distribution and electronic structure were determined by a combination of infrared reflection absorption spectroscopy (IRAS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT). It was established that the Ag atoms with Pd neighbors are electronically altered, and the degree of alteration correlates with the number of nearest Pd. Temperature-programmed reaction spectroscopy (TPRS) and DFT demonstrated that the electronically altered Ag domains create a new reaction pathway that selectively dehydrogenates formic acid. In contrast, Pd monomers surrounded by Ag are demonstrated to have a similar reactivity compared to pristine Pd(111), yielding CO and H2O in addition to the dehydrogenation products. However, they bind to the produced CO weaker than pristine Pd, demonstrating an enhancement in resistance to CO poisoning. This work therefore shows that surface Ag domains modified by interaction with subsurface Pd are the key active sites for selective decomposition of formic acid, while surface Pd atoms are detrimental to selectivity. Hence, the decomposition pathways can be tailored for CO-free H2 production on Pd-Ag alloy systems.

3.
Nanotechnology ; 34(12)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36538812

RESUMO

Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.

4.
J Am Chem Soc ; 144(33): 15132-15142, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35952667

RESUMO

Dynamic restructuring of bimetallic catalysts plays a crucial role in their catalytic activity and selectivity. In particular, catalyst pretreatment with species such as carbon monoxide and oxygen has been shown to be an effective strategy for tuning the surface composition and morphology. Mechanistic and kinetic understanding of such restructuring is fundamental to the chemistry and engineering of surface active sites but has remained challenging due to the large structural, chemical, and temporal degrees of freedom. Here, we combine time-resolved temperature-programmed infrared reflection absorption spectroscopy, ab initio thermodynamics, and machine-learning molecular dynamics to uncover previously unidentified timescale and kinetic parameters of in situ restructuring in Pd/Au(111), a highly relevant model system for dilute Pd-in-Au nanoparticle catalysts. The key innovation lies in utilizing CO not only as a chemically sensitive probe of surface Pd but also as an agent that induces restructuring of the surface. Upon annealing in vacuum, as-deposited Pd islands became encapsulated by Au and partially dissolved into the subsurface, leaving behind isolated Pd monomers on the surface. Subsequent exposure to 0.1 mbar CO enabled Pd monomers to repopulate the surface up to 373 K, above which complete Pd dissolution occurred by 473 K, with apparent activation energies of 0.14 and 0.48 eV, respectively. These restructuring processes occurred over the span of ∼1000 s at a given temperature. Such a minute-timescale dynamics not only elucidates the fluxional nature of alloy catalysts but also presents an opportunity to fine-tune the surface under moderate temperature and pressure conditions.

5.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35254051

RESUMO

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Assuntos
Ligas , Óxidos , Catálise , Domínio Catalítico , Metais , Oxirredução , Óxidos/química
6.
Nanotechnology ; 32(47)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34380123

RESUMO

The structures formed by the deposition of mass-selected niobium oxide clusters, Nb3Oy(y = 5, 6, 7), onto Au(111) were studied by scanning tunneling microscopy. The as-deposited Nb3O7clusters assemble into large dendritic structures that grow on the terraces as well as extend from the top and bottom of step edges. The Nb3O6cluster also forms dendritic assemblies but they are generally much smaller in size. The assemblies are composed of smaller discrete structures (<1 nm) which are likely to be single clusters. The dendritic assemblies for both the Nb3O7and Nb3O6clusters have fractal dimensions of about 1.7 which is very close to that expected for simple diffusion limited aggregation. Annealing the Nb3O7,6/Au(111) surfaces up to 550 K results in changes in assembly sizes and increases in heights, while heating to 700 results in the disruption of the assemblies into smaller structures. By contrast, the as-deposited Nb3O5/Au(111) surface at RT exhibits compact cluster structures which become 3D nanoparticles when annealed above 550 K. Differences in the observed surface structures and thermal stability are attributed to differences in metal-oxygen stoichiometry which can influence cluster binding energies, mobility and inter-cluster interactions.

7.
Small ; 17(39): e2103661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34463426

RESUMO

Xenon (Xe) is a valuable and scarce noble gas used in various applications, including lighting, electronics, and anesthetics, among many others. It is also a volatile byproduct of the nuclear fission of uranium. A novel material architecture consisting of silicate nanocages in contact with a metal surface and an approach for trapping single Xe atoms in these cages is presented. The trapping is done at low Xe pressures and temperatures between 400 and 600 K, and the process is monitored in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. Release of the Xe from the cages occurs only when heating to temperatures above 750 K. A model that explains the experimental trapping kinetics is proposed and tested using Monte Carlo methods. Density functional theory calculations show activation energies for Xe exiting the cages consistent with experiments. This work can have significant implications in various fields, including Xe production, nuclear power, nuclear waste remediation, and nonproliferation of nuclear weapons. The results are also expected to apply to argon, krypton, and radon, opening an even more comprehensive range of applications.


Assuntos
Dióxido de Silício , Xenônio , Criptônio , Método de Monte Carlo , Temperatura
8.
Angew Chem Int Ed Engl ; 60(19): 10888-10894, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462957

RESUMO

Interfacially confined microenvironments have recently gained attention in catalysis, as they can be used to modulate reaction chemistry. The emergence of a 2D nanospace at the interface between a 2D material and its support can promote varying kinetic and energetic schemes based on molecular level confinement effects imposed in this reduced volume. We report on the use of a 2D oxide cover, bilayer silica, on catalytically active Pd(111) undergoing the CO oxidation reaction. We "uncover" mechanistic insights about the structure-activity relationship with and without a 2D silica overlayer using in situ IR and X-ray spectroscopy and mass spectrometry methods. We find that the CO oxidation reaction on Pd(111) benefits from confinement effects imposed on surface adsorbates under 2D silica. This interaction results in a lower and more dispersed coverage of CO adsorbates with restricted CO adsorption geometries, which promote oxygen adsorption and lay the foundation for the formation of a reactive surface oxide that produces higher CO2 formation rates than Pd alone.

9.
ACS Nano ; 14(12): 16558-16564, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-32946215

RESUMO

There are now many examples of single molecule rotors, motors, and switches in the literature that, when driven by photons, electrons, or chemical reactions, exhibit well-defined motions. As a step toward using these single molecule devices to perform useful functions, one must understand how they interact with their environment and quantify their ability to perform work on it. Using a single molecule rotary switch, we examine the transfer of electrical energy, delivered via electron tunneling, to mechanical motion and measure the forces the switch experiences with a noncontact q-plus atomic force microscope. Action spectra reveal that the molecular switch has two stable states and can be excited resonantly between them at a bias of 100 mV via a one-electron inelastic tunneling process which corresponds to an energy input of 16 zJ. While the electrically induced switching events are stochastic and no net work is done on the cantilever, by measuring the forces between the molecular switch and the AFM cantilever, we can derive the maximum hypothetical work the switch could perform during a single switching event, which is ∼55 meV, equal to 8.9 zJ, which translates to a hypothetical efficiency of ∼55% per individual inelastic tunneling electron-induced switching event. When considering the total electrical energy input, this drops to 1 × 10-7% due to elastic tunneling events that dominate the tunneling current. However, this approach constitutes a general method for quantifying and comparing the energy input and output of molecular-mechanical devices.

10.
J Chem Phys ; 152(5): 054714, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035453

RESUMO

The morphology and reactivity of mass-selected titania clusters, Ti3O6 and Ti3O5, deposited onto Au(111) were studied by scanning tunneling microscopy and temperature programmed desorption. Despite differing by only one oxygen atom, the stoichiometric Ti3O6 and the sub-stoichiometric ("reduced") Ti3O5 clusters exhibit very different structures and preferred binding sites. The Ti3O6 clusters bind at step edges and form small assemblies (2-4 clusters) on Au terraces, while the "reduced" Ti3O5 clusters form much larger fractal-like assemblies that can extend across step boundaries. Annealing the Ti3O5,6/Au(111) systems to higher temperatures causes changes in the size-distributions of cluster assemblies, but does not lead to the formation of TiOx nanoislands for temperatures ≤700 K. Reactivity studies show that the reduced Ti3O5 cluster has higher activity than Ti3O6 for 2-propanol dehydration, although both clusters exhibit substantial activity for dehydrogenation to acetone. Calculations using DFT+U suggest that the differences in aggregate morphology and reactivity are associated with the number of undercoordinated Ti3c sites in the supported clusters.

12.
Nano Lett ; 19(6): 3457-3463, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31046292

RESUMO

Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.

13.
Phys Chem Chem Phys ; 20(19): 13122-13126, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29737995

RESUMO

Disorder-Order transitions in a weakly adsorbed two-dimensional film have been identified for the first time using ambient-pressure scanning tunneling microscopy (AP-STM) and X-ray photoelectron spectroscopy (AP-XPS). As of late, great effort has been devoted to the capture, activation and conversion of carbon dioxide (CO2), a ubiquitous greenhouse gas and by-product of many chemical processes. The high stability and non-polar nature of CO2 leads to weak bonding with well-defined surfaces of metals and oxides. CO2 adsorbs molecularly on the rutile TiO2(110) surface with a low adsorption energy of ∼10 kcal mol-1. In spite of this weak binding, images of AP-STM show that a substantial amount of CO2 can reside on a TiO2(110) surface at room temperature forming two-dimensionally ordered films. We have employed microscopic imaging under in situ conditions, soft X-ray spectroscopy and theory to decipher the unique ordering behavior seen for CO2 on TiO2(110).

14.
ACS Appl Mater Interfaces ; 9(29): 24655-24661, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28671451

RESUMO

The efficient charge accumulation of an ideal supercapacitor electrode requires abundant micropores and its fast electrolyte-ions transport prefers meso/macropores. However, current electrode materials cannot meet both requirements, resulting in poor performance. Herein, we creatively constructed three-dimensional cabbage-coral-like graphene as an ideal electrode material, in which meso/macro channels are formed by graphene walls and rich micropores are incorporated in the surface layer of the graphene walls. The unique 3D graphene material can achieve a high gravimetric capacitance of 200 F/g with aqueous electrolyte, 3 times larger than that of commercially used activated carbon (70.8 F/g). Furthermore, it can reach an ultrahigh areal capacitance of 1.28 F/cm2 and excellent rate capability (83.5% from 0.5 to 10 A/g) as well as high cycling stability (86.2% retention after 5000 cycles). The excellent electric double-layer performance of the 3D graphene electrode can be attributed to the fast electrolyte ion transport in the meso/macro channels and the rapid and reversible charge adsorption with negligible transport distance in the surface micropores.

15.
Nat Commun ; 8: 16118, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714478

RESUMO

The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

16.
J Phys Chem Lett ; 7(19): 3866-3872, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27631665

RESUMO

Potassium deposition on TiO2(110) results in reduction of the substrate and formation of loosely bound potassium species that can move easily on the oxide surface to promote catalytic activity. The results of density functional calculations predict a large adsorption energy (∼3.2 eV) with a small barrier (∼0.25 eV) for diffusion on the oxide surface. In scanning tunneling microscopy images, the adsorbed alkali atoms lose their mobility when in contact with surface OH groups. Furthermore, K adatoms facilitate the dissociation of water on the titania surface. The K-(OH) species generated are good sites for the binding of gold clusters on the TiO2(110) surface, producing Au/K/TiO2(110) systems with high activity for the water-gas shift.

17.
Phys Chem Chem Phys ; 18(23): 15972-9, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27240884

RESUMO

Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti(3+), significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.

18.
Angew Chem Int Ed Engl ; 55(26): 7455-9, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27144344

RESUMO

Ni-CeO2 is a highly efficient, stable and non-expensive catalyst for methane dry reforming at relative low temperatures (700 K). The active phase of the catalyst consists of small nanoparticles of nickel dispersed on partially reduced ceria. Experiments of ambient pressure XPS indicate that methane dissociates on Ni/CeO2 at temperatures as low as 300 K, generating CHx and COx species on the surface of the catalyst. Strong metal-support interactions activate Ni for the dissociation of methane. The results of density-functional calculations show a drop in the effective barrier for methane activation from 0.9 eV on Ni(111) to only 0.15 eV on Ni/CeO2-x (111). At 700 K, under methane dry reforming conditions, no signals for adsorbed CHx or C species are detected in the C 1s XPS region. The reforming of methane proceeds in a clean and efficient way.

19.
Phys Chem Chem Phys ; 18(25): 16621-8, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27095305

RESUMO

Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni-CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni(0)/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni(0) is the active phase leading to both C-C and C-H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce(3+)(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. The co-existence and cooperative interplay of Ni(0) and Ce(3+)(OH)x through a metal-support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.

20.
Angew Chem Int Ed Engl ; 54(41): 11946-51, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26215635

RESUMO

Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate that by generating highly dispersed and stabilized Cu(+) active sites in a TiCuOx mixed oxide the epoxidation selectivity can be tuned. The TiCuOx surface anchors the key surface intermediate, an oxametallacycle, leading to higher selectivity for epoxidation of propylene.


Assuntos
Alcenos/química , Cobre/química , Compostos de Epóxi/química , Titânio/química , Catálise , Modelos Moleculares , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...