Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 19(6): 963-972, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28727278

RESUMO

In animal-pollinated hermaphroditic plants, optimal floral allocation determines relative investment into sexes, which is ultimately dependent on flower size. Larger flowers disproportionally increase maleness whereas smaller and less rewarding flowers favour female function. Although floral traits are considered strongly conserved, phylogenetic relationships in the interspecific patterns of resource allocation to floral sex remain overlooked. We investigated these patterns in Cistaceae, a hermaphroditic family. We reconstructed phylogenetic relationships among Cistaceae species and quantified phylogenetic signal for flower size, dry mass and nutrient allocation to floral structures in 23 Mediterranean species using Blomberg's K-statistic. Lastly, phylogenetically-controlled correlational and regression analyses were applied to examine flower size-based allometry in resource allocation to floral structures. Sepals received the highest dry mass allocation, followed by petals, whereas sexual structures increased nutrient allocation. Flower size and resource allocation to floral structures, except for carpels, showed a strong phylogenetic signal. Larger-flowered species allometrically allocated more resources to maleness, by increasing allocation to corollas and stamens. Our results suggest a major role of phylogeny in determining interspecific changes in flower size and subsequent floral sex allocation. This implies that flower size balances the male-female function over the evolutionary history of Cistaceae. While allometric resource investment in maleness is inherited across species diversification, allocation to the female function seems a labile trait that varies among closely related species that have diversified into different ecological niches.


Assuntos
Cistaceae/genética , Flores/genética , Cistaceae/anatomia & histologia , Cistaceae/fisiologia , Flores/anatomia & histologia , Flores/fisiologia , Filogenia , Reprodução/fisiologia
2.
Plant Biol (Stuttg) ; 19(5): 806-817, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28627760

RESUMO

Flowering and fruiting are key events in the life history of plants, and both are critical to their reproductive success. Besides the role of evolutionary history, plant reproductive phenology is regulated by abiotic factors and shaped by biotic interactions with pollinators and seed dispersers. In Melastomataceae, a dominant Neotropical family, the reproductive systems vary from allogamous with biotic pollination to apomictic, and seed dispersal varies from dry (self-dispersed) to fleshy (animal-dispersed) fruits. Such variety in reproductive strategies is likely to affect flowering and fruiting phenologies. In this study, we described the reproductive phenology of 81 Melastomataceae species occurring in two biodiversity hotspots: the Atlantic rain forest and the campo rupestre. We aim to disentangle the role of abiotic and biotic factors defining flowering and fruiting times of Melastomataceae species, considering the contrasting breeding and seed dispersal systems, and their evolutionary history. In both vegetation types, pollinator-dependent species had higher flowering seasonality than pollinator-independent ones. Flowering patterns presented phylogenetic signal regardless of vegetation type. Fruiting of fleshy-fruited species was seasonal in campo rupestre but not in Atlantic rain forest; the fruiting of dry-fruited species was also not seasonal in both vegetation types. Fruiting showed a low phylogenetic signal, probably because the influence of environment and dispersal agents on fruiting time is stronger than the phylogenetic affinity. Considering these ecophylogenetic patterns, our results indicate that flowering may be shaped by the different reproductive strategies of Melastomataceae lineages, while fruiting patterns may be governed mainly by the seed dispersal strategy and flowering time, with less phylogenetic influence.


Assuntos
Melastomataceae/fisiologia , Reprodução/fisiologia , Animais , Flores/fisiologia , Frutas/fisiologia , Filogenia , Polinização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA