Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 34(47): 15587-600, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25411487

RESUMO

Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3-5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1(G93A) rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1(G93A) rats through targeted delivery of AAV9-SOD1-shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Córtex Motor/enzimologia , Córtex Motor/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/fisiologia , Esclerose Lateral Amiotrófica/mortalidade , Animais , Morte Celular/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Herpesvirus Suídeo 1/genética , Humanos , Masculino , Camundongos , Junção Neuromuscular/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Superóxido Dismutase-1 , Transfecção
2.
J Comp Neurol ; 522(12): 2707-28, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24610630

RESUMO

Transplantation of human neural progenitor cells (NPCs) into the brain or spinal cord to replace lost cells, modulate the injury environment, or create a permissive milieu to protect and regenerate host neurons is a promising therapeutic strategy for neurological diseases. Deriving NPCs from human fetal tissue is feasible, although problematic issues include limited sources and ethical concerns. Here we describe a new and abundant source of NPCs derived from human induced pluripotent stem cells (iPSCs). A novel chopping technique was used to transform adherent iPSCs into free-floating spheres that were easy to maintain and were expandable (EZ spheres) (Ebert et al. [2013] Stem Cell Res 10:417-427). These EZ spheres could be differentiated towards NPC spheres with a spinal cord phenotype using a combination of all-trans retinoic acid (RA) and epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) mitogens. Suspension cultures of NPCs derived from human iPSCs or fetal tissue have similar characteristics, although they were not similar when grown as adherent cells. In addition, iPSC-derived NPCs (iNPCs) survived grafting into the spinal cord of athymic nude rats with no signs of overgrowth and with a very similar profile to human fetal-derived NPCs (fNPCs). These results suggest that human iNPCs behave like fNPCs and could thus be a valuable alternative for cellular regenerative therapies of neurological diseases.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Medula Espinal/citologia , Análise de Variância , Animais , Aquaporina 4/metabolismo , Astrócitos/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/transplante , Neurônios/metabolismo , Ratos , Ratos Nus , Medula Espinal/cirurgia , Transcriptoma/fisiologia
3.
Neuroreport ; 25(6): 367-72, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24284956

RESUMO

Human neural progenitor cells (hNPCs) derived from the fetal cortex can be expanded in vitro and genetically modified through lentiviral transduction to secrete growth factors shown to have a neurotrophic effect in animal models of neurological disease. hNPCs survive and mature following transplantation into the central nervous system of large and small animals including the rat model of amyotrophic lateral sclerosis. Here we report that hNPCs engineered to express glial cell line-derived neurotrophic factor (GDNF) survive long-term (7.5 months) following transplantation into the spinal cord of athymic nude rats and continue to secrete GDNF. Cell proliferation declined while the number of astrocytes increased, suggesting final maturation of the cells over time in vivo. Together these data show that GDNF-producing hNPCs may be useful as a source of cells for long-term delivery of both astrocytes and GDNF to the damaged central nervous system.


Assuntos
Células-Tronco Fetais/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sobrevivência de Enxerto/fisiologia , Células-Tronco Neurais/metabolismo , Medula Espinal/transplante , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Células-Tronco Fetais/transplante , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Células-Tronco Neurais/transplante , Ratos , Ratos Nus , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA