Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447882

RESUMO

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Assuntos
Aurora Quinase A , Proteínas de Ciclo Celular , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Supressora de Tumor p53/genética , Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Instabilidade Genômica , Instabilidade Cromossômica/genética , Cromossomos/metabolismo
2.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900267

RESUMO

The enzyme ataxia-telangiectasia mutated (ATM) kinase is a pluripotent signaling mediator which activates cellular responses to genotoxic and metabolic stress. It has been shown that ATM enables the growth of mammalian adenocarcinoma stem cells, and therefore the potential benefits in cancer chemotherapy of a number of ATM inhibitors, such as KU-55933 (KU), are currently being investigated. We assayed the effects of utilizing a triphenylphosphonium-functionalized nanocarrier delivery system for KU on breast cancer cells grown either as a monolayer or in three-dimensional mammospheres. We observed that the encapsulated KU was effective against chemotherapy-resistant mammospheres of breast cancer cells, while having comparably lower cytotoxicity against adherent cells grown as monolayers. We also noted that the encapsulated KU sensitized the mammospheres to the anthracycline drug doxorubicin significantly, while having only a weak effect on adherent breast cancer cells. Our results suggest that triphenylphosphonium-functionalized drug delivery systems that contain encapsulated KU, or compounds with a similar impact, are a useful addition to chemotherapeutic treatment schemes that target proliferating cancers.

3.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36797043

RESUMO

The AurkA kinase is a well-known mitotic regulator, frequently overexpressed in tumors. The microtubule-binding protein TPX2 controls AurkA activity, localization, and stability in mitosis. Non-mitotic roles of AurkA are emerging, and increased nuclear localization in interphase has been correlated with AurkA oncogenic potential. Still, the mechanisms leading to AurkA nuclear accumulation are poorly explored. Here, we investigated these mechanisms under physiological or overexpression conditions. We observed that AurkA nuclear localization is influenced by the cell cycle phase and nuclear export, but not by its kinase activity. Importantly, AURKA overexpression is not sufficient to determine its accumulation in interphase nuclei, which is instead obtained when AURKA and TPX2 are co-overexpressed or, to a higher extent, when proteasome activity is impaired. Expression analyses show that AURKA, TPX2, and the import regulator CSE1L are co-overexpressed in tumors. Finally, using MCF10A mammospheres we show that TPX2 co-overexpression drives protumorigenic processes downstream of nuclear AurkA. We propose that AURKA/TPX2 co-overexpression in cancer represents a key determinant of AurkA nuclear oncogenic functions.


Assuntos
Aurora Quinase A , Neoplasias , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteólise , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
4.
Cancer Gene Ther ; 30(1): 124-136, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117234

RESUMO

p300/CBP histone acetyltransferases (HAT) are critical transcription coactivators involved in multiple cellular activities. They act at multiple levels in non-small cell lung carcinoma (NSCLC) and appear, therefore, as promising druggable targets. Herein, we investigated the biological effects of A-485, the first selective (potent) drug-like HAT catalytic inhibitor of p300/CBP, in human NSCLC cell lines. A-485 treatment specifically reduced p300/CBP-mediated histone acetylation marks and caused growth arrest of lung cancer cells via activation of the autophagic pathway. Indeed, A-485 growth-arrested cells displayed phenotypic markers of cell senescence and failed to form colonies. Notably, disruption of autophagy by genetic and pharmacological approaches triggered apoptotic cell death. Mechanistically, A-485-induced senescence occurred through the accumulation of reactive oxygen species (ROS), which in turn resulted in DNA damage and activation of the autophagic pathway. Interestingly, ROS scavengers were able to revert senescence phenotype and restore cell viability, suggesting that ROS production had a key role in upstream events leading to growth arrest commitment. Altogether, our data provide new insights into the biological effects of the A-485 and uncover the importance of the autophagic/apoptotic response to design a new combinatorial anticancer strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Autofagia , Oxirredução
5.
Cancers (Basel) ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36010841

RESUMO

Cancer cells frequently exhibit dysregulation of the DNA damage response (DDR), genomic instability, and altered RNA metabolism. Recent genome-wide studies have strongly suggested an interaction between the pathways involved in the cellular response to DDR and in the regulation of RNA metabolism, but the molecular mechanism(s) involved in this crosstalk are largely unknown. Herein, we found that activation of the DDR kinase ATM promotes its interaction with Sam68, leading to phosphorylation of this multifunctional RNA binding protein (RBP) on three residues: threonine 61, serine 388 and serine 390. Moreover, we demonstrate that ATM-dependent phosphorylation of threonine 61 promotes the function of Sam68 in the DDR pathway and enhances its RNA processing activity. Importantly, ATM-mediated phosphorylation of Sam68 in prostate cancer cells modulates alternative polyadenylation of transcripts that are targets of Sam68, supporting the notion that the ATM-Sam68 axis exerts a multifaceted role in the response to DNA damage. Thus, our work validates Sam68 as an ATM kinase substrate and uncovers an unexpected bidirectional interplay between ATM and Sam68, which couples the DDR pathway to modulation of RNA metabolism in response to genotoxic stress.

6.
Molecules ; 27(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014466

RESUMO

Euphorbia resinifera latex has been extensively utilized in traditional medicine due to its range of bioactivities. Chromatographic separations on silica gel of ethanol extract of E. resinifera latex led to the development of a new procedure for isolating resiniferatoxin (4) via dried E. resinifera latex and the identification of nine compounds. Among these, catechol (7), protocatechuic acid (8) and 3,4-dihydroxyphenylacetic acid (9), known phenolic compounds, were identified for the first time in E. resinifera latex. Herein we investigated the effects of major compounds of the latex of E. resinifera on the yeast Saccharomyces cerevisiae, on the growth of Aspergillus carbonarius, a widespread fungal contaminant, and on the breast cancer cell line MCF7 as well as on MCF10A normal breast cells. 12-deoxyphorbol-13-isobutyrate-20-acetate (2) had an inhibiting effect on the growth of A. carbonarius, and 7-p-metoxyphenylacetate-3,8,12-triacetate ingol (3) showed a negative effect on yeast cell growth and also a cytotoxic effect on breast cancer cell line MCF7, but not on MCF10A cells. Deglucosyl euphorbioside A (5) and euphorbioside A (6) showed a discoloration effect that was possibly related to mitochondrial functionality in yeast, and also cytotoxicity only on the cancer cell line that was tested. Interestingly, treatment of MCF7 cells with 7-p-metoxyphenylacetate-3,8,12-triacetate ingol (3) and deglucosyl euphorbioside A (5) not only led to a specific cytotoxic effect but also to the increase in the level of intracellular ROS.


Assuntos
Antineoplásicos , Neoplasias da Mama , Diterpenos , Euphorbia , Antifúngicos , Antineoplásicos/farmacologia , Diterpenos/química , Euphorbia/química , Feminino , Humanos , Látex/química , Saccharomyces cerevisiae
7.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664581

RESUMO

Glioblastoma multiforme (GBM) is a severe brain tumor whose ability to mutate and adapt to therapies is at the base for the extremely poor survival rate of patients. Despite multiple efforts to develop alternative forms of treatment, advances have been disappointing and GBM remains an arduous tumor to treat. One of the leading causes for its strong resistance is the innate upregulation of DNA repair mechanisms. Since standard therapy consists of a combinatory use of ionizing radiation and alkylating drugs, which both damage DNA, targeting the DNA damage response (DDR) is proving to be a beneficial strategy to sensitize tumor cells to treatment. In this review, we will discuss how recent progress in the availability of the DDR kinase inhibitors will be key for future therapy development. Further, we will examine the principal existing DDR inhibitors, with special focus on those currently in use for GBM clinical trials.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glioblastoma/tratamento farmacológico , Terapia de Alvo Molecular , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Dano ao DNA , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/uso terapêutico , Glioblastoma/genética , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Compostos de Nitrosoureia/farmacologia , Compostos de Nitrosoureia/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
8.
Int J Pharm ; 585: 119465, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32497731

RESUMO

Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor progression and drug resistance. Accumulating evidence provides insight into the function of autophagy in maintenance and survival of CSCs. Here, we studied the impact of a mitochondriotropic triphenylphosphonium-functionalized dendrimeric nanocarrier on cultured breast cancer cell lines, grown either as adherent cells or as mammospheres that mimic a stem-like phenotype. The nanocarrier manifested a substantial cytotoxicity both alone as well as after encapsulation of chloroquine, a well-known autophagy inhibitor. The cytotoxic effects of the nanocarrier could be ascribed to interference with mitochondrial function. Importantly, mammospheres were selectively sensitive to encapsulated chloroquine and this depends on the expression of the gene encoding ATM kinase. Ataxia-telangiectasia mutated (ATM) kinase is an enzyme that functions as an essential signaling mediator that enables growth of cancer stem cells through the regulation of autophagy. We noted that this ATM-dependent sensitivity of mammospheres to encapsulated chloroquine was independent of the status of the tumor suppressor gene p53. Our study suggests that breast cancer stem cells, as they are modeled by mammospheres, are sensitive to encapsulated chloroquine, depending on the expression of the ATM kinase, which is thereby characterized as a potential biomarker for sensitivity to this type of treatment.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/biossíntese , Cloroquina/farmacologia , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Química Farmacêutica/métodos , Cloroquina/administração & dosagem , Proteínas de Ligação a DNA/genética , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacologia , Feminino , Humanos , Compostos Organofosforados
9.
Front Cell Dev Biol ; 8: 599048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490066

RESUMO

Increasing evidence suggests a strong interplay between autophagy and genomic stability. Recently, several papers have demonstrated a molecular connection between the DNA Damage Response (DDR) and autophagy and have explored how this link influences cell fate and the choice between apoptosis and senescence in response to different stimuli. The aberrant deregulation of this interplay is linked to the development of pathologies, including cancer and neurodegeneration. Ataxia-telangiectasia mutated kinase (ATM) is the product of a gene that is lost in Ataxia-Telangiectasia (A-T), a rare genetic disorder characterized by ataxia and cerebellar neurodegeneration, defects in the immune response, higher incidence of lymphoma development, and premature aging. Importantly, ATM kinase plays a central role in the DDR, and it can finely tune the balance between senescence and apoptosis: activated ATM promotes autophagy and in particular sustains the lysosomal-mitochondrial axis, which in turn promotes senescence and inhibits apoptosis. Therefore, ATM is the key factor that enables cells to escape apoptosis by entering senescence through modulation of autophagy. Importantly, unlike apoptotic cells, senescent cells are viable and have the ability to secrete proinflammatory and mitogenic factors, thus influencing the cellular environment. In this review we aim to summarize recent advances in the understanding of molecular mechanisms linking DDR and autophagy to senescence, pointing out the role of ATM kinase in these cellular responses. The significance of this regulation in the pathogenesis of Ataxia-Telangiectasia will be discussed.

10.
Oncogene ; 38(27): 5413-5424, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30967634

RESUMO

Inhibitors of Vascular Endothelial Growth Factor target both tumor vasculature and cancer cells that have hijacked VEGF Receptors (VEGFRs) signaling for tumor growth-promoting activities. It is important to get precise insight in the specificity of cell responses to these antiangiogenic drugs to maximize their efficiency and minimize off-target systemic toxicity. Here we report that Axitinib, an inhibitor of VEGFRs currently in use as a second line treatment for advanced renal cell carcinoma, promotes senescence of human endothelial cells in vitro. A one-hour pulse of Axitinib is sufficient for triggering cell senescence. Mechanistically, this requires oxidative stress-dependent activation of the Ataxia Telangiectasia Mutated (ATM) kinase. Axitinib-mediated senescence promoting action is prevented by short-term treatment with antioxidants or ATM inhibitors, which conversely fail to prevent senescence induced by the DNA-damaging drug doxorubicin. Coherently, induction of oxidative stress-related genes distinguishes the response of endothelial cells to Axitinib from that to doxorubicin. Importantly, an Axitinib pulse causes cell senescence in glioblastoma cells. However, neither antioxidants nor ATM inhibitors can reverse this phenotype. Thus, antioxidants may selectively protect endothelial cells from Axitinib by decreasing systemic toxicity and maintaining a functional vascularization necessary for efficient delivery of chemotherapeutic drugs within the tumor mass.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Axitinibe/farmacologia , Senescência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Inibidores da Angiogênese/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Células Endoteliais/metabolismo , Ativação Enzimática , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/prevenção & controle , Inibidores de Proteínas Quinases/administração & dosagem
11.
Int J Mol Sci ; 19(12)2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30501030

RESUMO

Caspase-8 was originally identified as a central player of programmed cell death triggered by death receptor stimulation. In that context, its activity is tightly regulated through several mechanisms, with the best established being the expression of FLICE-like inhibitory protein (FLIP) family proteins and the Src-dependent phosphorylation of Caspase-8 on Tyr380. Loss of apoptotic signaling is a hallmark of cancer and indeed Caspase-8 expression is often lost in tumors. This event may account not only for cancer progression but also for cancer resistance to radiotherapy and chemotherapy. Intriguingly, other tumors, such as glioblastoma, preferentially retain Caspase-8 expression, and high levels of Caspase-8 expression may correlate with a worse prognosis, suggesting that in this context this protease loses its apoptotic activity and gains additional functions. Using different cellular systems, it has been clearly shown that in cancer Caspase-8 can exhibit non-canonical functions, including promotion of cell adhesion, migration, and DNA repair. Intriguingly, in glioblastoma models, Caspase-8 can promote NF-κB-dependent expression of several cytokines, angiogenesis, and in vitro and in vivo tumorigenesis. Overall, these observations suggest that some cancer cells may hijack Caspase-8 function which in turn promote cancer progression and resistance to therapy. Here we aim to highlight the multiple functions of Caspase-8 and to discuss whether the molecular mechanisms that modulate the balance between those functions may be targeted to dismantle the aberrant activity of Caspase-8 and to restore its canonical apoptotic functionality.


Assuntos
Caspase 8/metabolismo , Glioblastoma/metabolismo , Animais , Caspase 8/genética , Dano ao DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
Front Oncol ; 8: 73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616191

RESUMO

Ataxia-telangiectasia mutated kinase (ATM) plays a central role in the DNA damage response (DDR) and mutations in its gene lead to the development of a rare autosomic genetic disorder, ataxia telangiectasia (A-T) characterized by neurodegeneration, premature aging, defects in the immune response, and higher incidence of lymphoma development. The ability of ATM to control genome stability several pointed to ATM as tumor suppressor gene. Growing evidence clearly support a significant role of ATM, in addition to its master ability to control the DDR, as principle modulator of oxidative stress response and mitochondrial homeostasis, as well as in the regulation of autophagy, hypoxia, and cancer stem cell survival. Consistently, A-T is strongly characterized by aberrant oxidative stress, significant inability to remove damaged organelles such as mitochondria. These findings raise the question whether ATM may contribute to a more general hijack of signaling networks in cancer, therefore, playing a dual role in this context. Indeed, an unexpected tumorigenic role for ATM, in particular, tumor contexts has been demonstrated. Genetic inactivation of Beclin-1, an autophagy regulator, significantly reverses mitochondrial abnormalities and tumor development in ATM-null mice, independently of DDR. Furthermore, ATM sustains cancer stem cells survival by promoting the autophagic flux and ATM kinase activity is enhanced in HER2-dependent tumors. This mini-review aims to shed new light on the complexity of these new molecular circuits through which ATM may modulate cancer progression and to highlight a novel role of ATM in the control of proteostasis.

13.
Oncotarget ; 8(13): 21692-21709, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423511

RESUMO

The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Relacionadas à Autofagia/biossíntese , Autofagia , Neoplasias da Mama/patologia , Cisteína Endopeptidases/biossíntese , Células-Tronco Neoplásicas/patologia , Autofagia/fisiologia , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
14.
Mol Cell Oncol ; 3(2): e1054551, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27308589

RESUMO

ATM kinase is a gatekeeper of genome stability. However, its role in several other signaling pathways suggests that it might not always act as a tumor suppressor. Here, we discuss recent data that unveil a function of ATM as a tumor promoter in HER2-positive breast cancer.

15.
Nat Commun ; 6: 6886, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25881002

RESUMO

ATM kinase preserves genomic stability by acting as a tumour suppressor. However, its identification as a component of several signalling networks suggests a dualism for ATM in cancer. Here we report that ATM expression and activity promotes HER2-dependent tumorigenicity in vitro and in vivo. We reveal a correlation between ATM activation and the reduced time to recurrence in patients diagnosed with invasive HER2-positive breast cancer. Furthermore, we identify ATM as a novel modulator of HER2 protein stability that acts by promoting a complex of HER2 with the chaperone HSP90, therefore preventing HER2 ubiquitination and degradation. As a consequence, ATM sustains AKT activation downstream of HER2 and may modulate the response to therapeutic approaches, suggesting that the status of ATM activity may be informative for the treatment and prognosis of HER2-positive tumours. Our findings provide evidence for ATM's tumorigenic potential revising the canonical role of ATM as a pure tumour suppressor.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Carcinoma/genética , Receptor ErbB-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Células MCF-7 , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Adulto Jovem
16.
Int J Mol Sci ; 15(4): 5388-409, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24681585

RESUMO

Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian of genome stability and plays a central role in the DNA damage response (DDR). The deregulation of these pathways is strongly linked to cancer initiation and progression as well as to the development of therapeutic approaches. These observations, along with reports that identify ATM loss of function as an event that may promote tumor initiation and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM as a positive modulator of several signalling networks that sustain tumorigenesis, including oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase activation, raise the question of whether ATM function in cancer may be more complex. This review aims to give a complete overview on the work of several labs that links ATM to the control of the balance between cell survival, proliferation and death in cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Transformação Celular Neoplásica/genética , Reparo do DNA/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose/genética , Hipóxia Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Instabilidade Genômica , Humanos , Camundongos , Neoplasias , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Transdução de Sinais
17.
Oncoscience ; 1(6): 394-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25594035
18.
J Exp Clin Cancer Res ; 32: 95, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24252502

RESUMO

BACKGROUND: Mutations in the DNA damage response (DDR) factors, breast cancer 1 (BRCA1) and BRCA2, sensitize tumor cells to poly(ADP-ribose) polymerase (PARP) inhibitors. The ataxia telangiectasia mutated (ATM) kinase is a key DDR protein whose heterozygous germline mutation is a moderate-risk factor for developing breast cancer. In this study, we examined whether ATM inactivation in breast cancer cell lines confers sensitivity to PARP inhibitors. METHODS: Wild-type BRCA1/2 breast cancer cells (i.e., MCF-7 and ZR-75-1 lines) were genetically manipulated to downregulate ATM expression then assayed for cytostaticity/cytotoxicity upon treatment with PARP inhibitors, olaparib and iniparib. RESULTS: When ATM-depleted cells and their relative controls were treated with olaparib (a competitive PARP-1/2 inhibitor) and iniparib (a molecule originally described as a covalent PARP-1 inhibitor) a different response to the two compounds was observed. ATM-depletion sensitized both MCF-7 and ZR-75-1 cells to olaparib-treatment, as assessed by short and long survival assays and cell cycle profiles. In contrast, iniparib induced only a mild, ATM-dependent cytostatic effect in MCF-7 cells whereas ZR-75-1 cells were sensitive to this drug, independently of ATM inactivation. These latest results might be explained by recent observations indicating that iniparib acts with mechanisms other than PARP inhibition. CONCLUSIONS: These data indicate that ATM-depletion can sensitize breast cancer cells to PARP inhibition, suggesting a potential in the treatment of breast cancers low in ATM protein expression/activity, such as those arising in mutant ATM heterozygous carriers.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/genética , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Benzamidas/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Fatores de Risco
19.
J Hepatol ; 57(6): 1292-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22889954

RESUMO

BACKGROUND & AIMS: Genetic studies indicate that distinct signaling modulators are each necessary but not individually sufficient for embryonic hepatocyte survival in vivo. Nevertheless, how signaling players are interconnected into functional circuits and how they coordinate the balance of cell survival and death in developing livers are still major unresolved issues. In the present study, we examined the modulation of the p53 pathway by HGF/Met in embryonic livers. METHODS: We combined pharmacological and genetic approaches to biochemically and functionally evaluate p53 pathway modulation in primary embryonic hepatocytes and in developing livers. RT-PCR arrays were applied to investigate the selectivity of p53 transcriptional response triggered by Met. RESULTS: Met recruits p53 to regulate the liver developmental program, by qualitatively modulating its transcriptional properties: turning on the Mdm2 survival gene, while keeping death and cell-cycle arrest genes Pmaip1 and p21 silent. We investigated the mechanism leading to p53 regulation by Met and found that Abl and p38MAPK are required for p53 phosphorylation on S(389), Mdm2 upregulation, and hepatocyte survival. Alteration of this signaling mechanism switches p53 properties, leading to p53-dependent cell death in embryonic livers. RT-PCR array studies affirmed the ability of the Met-Abl-p53 axis to modulate the expression of distinct genes that can be regulated by p53. CONCLUSIONS: A signaling circuit involving Abl and p38MAPK is required downstream of Met for the survival of embryonic hepatocytes, via qualitative regulation of the p53 transcriptional response, by switching its proapoptotic into survival properties.


Assuntos
Hepatócitos/fisiologia , Fígado/embriologia , Proteínas Proto-Oncogênicas c-abl/fisiologia , Proteínas Proto-Oncogênicas c-met/fisiologia , Transcrição Gênica , Proteína Supressora de Tumor p53/fisiologia , Animais , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Proteomics ; 75(15): 4632-46, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22641158

RESUMO

Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics.


Assuntos
Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Glicólise , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases , Proteoma/metabolismo , Proteínas Supressoras de Tumor , Proteínas Mutadas de Ataxia Telangiectasia , Células HeLa , Humanos , Inibidores de Proteassoma/farmacologia , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...