Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 102: 164-178, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348742

RESUMO

Light microscopy is the conventional method used to investigate wood anatomy, identify the wood taxon, and assess its conservation state. It generally requires the mechanical cut of thin sections from a sample to obtain informative images. When dealing with wooden artworks or ancient remains (e.g., archaeological waterlogged wood), it is important to avoid sample destruction. In this work the efficacy of micro-magnetic resonance imaging (µ-MRI) to investigate the anatomy of waterlogged wood is assessed in comparison with light microscopy. Images along the three anatomical directions (transverse, tangential and radial) of six modern wood species and one archaeological specimen of waterlogged wood (from the Neolithic site "La Marmotta") were obtained both by µ-MRI and light microscopy. µ-MRI images were acquired virtually selecting 2D slices along the three wood anatomical directions. A 3D reconstruction was derived from 2D µ-MRI images. Conventional light microscopy histology was obtained by manually cutting thin sections. To the best of our knowledge, this is the first study in which high-resolution MR images and light microscopy images of the three anatomical directions of seven wood species are compared. The non-destructive µ-MRI approach allows to investigate the 2D and 3D topological organization of the whole waterlogged wood sample up to a resolution of 8 µm. Although the optical microscope attains higher image resolutions and remains superior in the observation of wood diagnostic characters, multi-parametric µ-MRI provides physiological investigation complementary to light microscopy, giving information concerning both a single section and the whole volume of the sample. The presented study may represent a starting point for further improvements of µ-MRI techniques applied to the non-destructive investigation of waterlogged wood samples, especially those of interest for cultural heritage.


Assuntos
Microscopia , Madeira , Imageamento por Ressonância Magnética , Arqueologia/métodos
2.
Gels ; 7(4)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940325

RESUMO

The cleaning of buildings, statues, and artworks composed of stone materials from metal corrosion is an important topic in the cultural heritage field. In this work the cleaning effectiveness of a PVA-PEO-borax hydrogel in removing metal corrosion products from different porosity stones has been assessed by using a multidisciplinary and non-destructive approach based on relaxation times measurement by single-sided portable Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and Raman Spectroscopy. To this end, samples of two lithotypes, Travertine and Carrara marble, have been soiled by triggering acidic corrosion of some copper coins in contact with the stone surface. Then, a PVA-PEO-borax hydrogel was used to clean the stone surface. NMR data were collected in untreated, soiled with corrosion products, and hydrogel-cleaned samples. Raman spectroscopy was performed on PVA-PEO-borax hydrogel before and after cleaning of metal corrosion. Furthermore, the characterization of the dirty gel was obtained by SEM-EDS. The combination of NMR, SEM-EDS and Raman results suggests that the mechanism behind the hydrogel cleaning action is to trap heavy metal corrosion products, such as Cu2+ between adjacent boron ions cross-linked with PVA. Moreover, the PVA-PEO-borax hydrogel cleaning effectiveness depends on the stone porosity, being better in Carrara marble compared to Travertine.

3.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204336

RESUMO

In this work, we investigated the potential of PVA-borax hydrogel for cleaning limestones and the dependence of the cleaning on the porosity of the rock and on the action time of the hydrogel treatment. Towards this goal, we used a nuclear magnetic resonance (NMR) spectrometer, developed for non-invasive and non-destructive applications on cultural heritage. T2-NMR parameters were quantified on different samples of Lecce stone and Travertine cut perpendicular (Pe) and parallel (Pa) to the bedding planes under different experimental conditions: untreated samples, treated with Paraloid B72 and cleaned with PVA-PEO-borax hydrogel applied for 4 min and 2 h. The T2 results suggest that the effectiveness of the cleaning strongly depended on the porosity of the stones. In Lecce stone, the hydrogel seemed to eliminate both the paramagnetic impurities (in equal measure with 4 min and 2 h treatment) and Paraloid B72. In Travertine Pe, characterized by a smaller pore size compared to Lecce stone, no significant effects were found regarding both the cleaning and the treatment with Paraloid B72. In Travertine Pa, characterized by a larger pore size than the other two samples, the hydrogel seemed to clean the paramagnetic agents (it worked better if applied for a longer time) but it did not appear to have any effect on Paraloid B72 removal.

4.
Magn Reson Chem ; 58(9): 860-869, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32364650

RESUMO

High-resolution NMR images on three different present-day wood samples and an archaeological wood specimen were presented and discussed. Although the spatial resolution is still low to perform dendrology for the exact identification of the wooden species, the T2 -spin-density weighted images exhibit contrasts that are in excellent agreement with optical histological images. On the other hand, T2 * and T1 -weighted images provide physiological information that is not obtainable by the usual light microscopic investigations. Moreover, the diffusion-weighted images show the anisotropic behaviour of the water diffusion coefficient quantified along and perpendicularly to vascular bundles (vessels and tracheids), which can be related to the morphology and size of wooden microstructure. This work suggests that high-resolution multiparametric MRI may be a useful tool to increase the information obtainable from the waterlogged archaeological wood remains in a completely non-invasive and non-destructive approach. Therefore, it would be desirable to further develop the hardware and functional characteristics of MRI scanners to improve their potential application in the field of wooden cultural heritage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...