Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Mater Au ; 2(1): 45-54, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36855699

RESUMO

The compound IrGa3 was synthesized by direct reaction of the elements. It is formed as a high-temperature phase in the Ir-Ga system. Single-crystal X-ray diffraction analysis confirms the tetragonal symmetry (space group P42 /mnm, No. 136) with a = 6.4623(1) Å and c = 6.5688(2) Å and reveals strong disorder in the crystal structure, reflected in the huge values and anisotropy of the atomic displacement parameters. A model for the real crystal structure of ht-IrGa3 is derived by the split-position approach from the single-crystal X-ray diffraction data and confirmed by an atomic-resolution transmission electron microscopy study. Temperature-dependent electrical resistivity measurements evidence semiconductor behavior with a band gap of 30 meV. A thermoelectric characterization was performed for ht-IrGa3 and for the solid solution IrGa3-x Zn x .

2.
Nat Commun ; 11(1): 1247, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144243

RESUMO

Photo-induced switching between collective quantum states of matter is a fascinating rising field with exciting opportunities for novel technologies. Presently, very intensively studied examples in this regard are nanometer-thick single crystals of the layered material 1T-TaS2, where picosecond laser pulses can trigger a fully reversible insulator-to-metal transition (IMT). This IMT is believed to be connected to the switching between metastable collective quantum states, but the microscopic nature of this so-called hidden quantum state remained largely elusive up to now. Here, we characterize the hidden quantum state of 1T-TaS2 by means of state-of-the-art x-ray diffraction and show that the laser-driven IMT involves a marked rearrangement of the charge and orbital order in the direction perpendicular to the TaS2-layers. More specifically, we identify the collapse of interlayer molecular orbital dimers as a key mechanism for this non-thermal collective transition between two truly long-range ordered electronic crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...