Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581109

RESUMO

Retroviral Gag polyproteins orchestrate the assembly and release of nascent virus particles from the plasma membranes of infected cells. Although it was traditionally thought that Gag proteins trafficked directly from the cytosol to the plasma membrane, we discovered that the oncogenic avian alpharetrovirus Rous sarcoma virus (RSV) Gag protein undergoes transient nucleocytoplasmic transport as an intrinsic step in virus assembly. Using a genetic approach in yeast, we identified three karyopherins that engage the two independent nuclear localization signals (NLSs) in Gag. The primary NLS is in the nucleocapsid (NC) domain of Gag and binds directly to importin-α, which recruits importin-ß to mediate nuclear entry. The second NLS (TNPO3), which resides in the matrix (MA) domain, is dependent on importin-11 and transportin-3 (TNPO3), which are known as MTR10p and Kap120p in yeast, although it is not clear whether these import factors are independent or additive. The functions of importin-α/importin-ß and importin-11 have been verified in avian cells, whereas the role of TNPO3 has not been studied. In this report, we demonstrate that TNPO3 directly binds to Gag and mediates its nuclear entry. To our surprise, this interaction did not require the cargo-binding domain (CBD) of TNPO3, which typically mediates nuclear entry for other binding partners of TNPO3, including SR domain-containing splicing factors and tRNAs that reenter the nucleus. These results suggest that RSV hijacks this host nuclear import pathway using a unique mechanism, potentially allowing other cargo to simultaneously bind TNPO3.IMPORTANCE RSV Gag nuclear entry is facilitated using three distinct host import factors that interact with nuclear localization signals in the Gag MA and NC domains. Here, we show that the MA region is required for nuclear import of Gag through the TNPO3 pathway. Gag nuclear entry does not require the CBD of TNPO3. Understanding the molecular basis for TNPO3-mediated nuclear trafficking of the RSV Gag protein may lead to a deeper appreciation for whether different import factors play distinct roles in retrovirus replication.


Assuntos
Produtos do Gene gag/metabolismo , Domínios Proteicos , Vírus do Sarcoma de Rous/fisiologia , Internalização do Vírus , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular , Produtos do Gene gag/genética , Carioferinas/metabolismo , Sinais de Localização Nuclear/metabolismo , Nucleocapsídeo/metabolismo , Transporte Proteico , Saccharomyces cerevisiae , Montagem de Vírus , alfa Carioferinas/metabolismo , beta Carioferinas/genética
2.
Protein Expr Purif ; 130: 137-145, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27721079

RESUMO

HIV Gag (Pr55Gag), a multidomain polyprotein that orchestrates the assembly and release of the human immunodeficiency virus (HIV), is an active target of antiretroviral inhibitor development. However, highly pure, stable, recombinant Pr55Gag has been difficult to produce in quantities sufficient for biophysical studies due to its susceptibility to proteolysis by cellular proteases during purification. Stability has been improved by using a construct that omits the p6 domain (Δp6). In vivo, p6 is crucial to the budding process and interacts with protein complexes in the ESCRT (Endosomal Sorting Complexes Required for Transport) pathway, it has been difficult to study its role in the context of Gag using in vitro approaches. Here we report the generation of a full length Gag construct containing a tobacco etch virus (TEV)-cleavable C-terminal hexahistidine tag, allowing a detailed comparison of its nucleic acid binding properties with other constructs, including untagged, Δp6, and C-terminally tagged (TEV-cleavable and non-cleavable) Gags, respectively. We have developed a standard expression and purification protocol that minimizes nucleic acid contamination and produces milligram quantities of full length Gag for in vitro studies and compound screening purposes. We found that the presence of a carboxyl-terminal hexahistidine tag changes the nucleic binding properties compared to the proteins that did not contain the tag (full length protein that was either untagged or reulted from removal of the tag during purification). The HIV Gag expression and purification protocol described herein provides a facile method of obtaining large quantities of high quality protein for investigators who wish to study the full length protein or the effect of the p6 domain on the biophysical properties of Gag.


Assuntos
DNA/química , Escherichia coli/metabolismo , HIV-1/genética , Histidina , Precursores de Proteínas , Proteínas Recombinantes de Fusão , Escherichia coli/genética , Histidina/biossíntese , Histidina/química , Histidina/genética , Histidina/isolamento & purificação , Humanos , Ligação Proteica , Precursores de Proteínas/biossíntese , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
3.
Virology ; 486: 307-20, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26584240

RESUMO

Essential host cofactors in retrovirus replication bind cis-acting sequences in the 5'untranslated region (UTR). Although host RBPs are crucial to all aspects of virus biology, elucidating their roles in replication remains a challenge to the field. Here RNA affinity-coupled-proteomics generated a comprehensive, unbiased inventory of human and avian RNA binding proteins (RBPs) co-isolating with 5'UTRs of HIV-1, spleen necrosis virus and Rous sarcoma virus. Applying stringent biochemical and statistical criteria, we identified 185 RBP; 122 were previously implicated in retrovirus biology and 63 are new to the 5'UTR proteome. RNA electrophoretic mobility assays investigated paralogs present in the common ancestor of vertebrates and one hnRNP was identified as a central node to the biological process-anchored networks of HIV-1, SNV, and RSV 5' UTR-proteomes. This comprehensive view of the host constituents of retroviral RNPs is broadly applicable to investigation of viral replication and antiviral response in both human and avian cell lineages.


Assuntos
Regiões 5' não Traduzidas , Infecções por HIV/metabolismo , HIV-1/metabolismo , Doenças das Aves Domésticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Infecções por Retroviridae/metabolismo , Retroviridae/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Dados de Sequência Molecular , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Retroviridae/classificação , Retroviridae/genética , Infecções por Retroviridae/genética , Infecções por Retroviridae/virologia
4.
Front Microbiol ; 6: 925, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441864

RESUMO

Retroviruses are positive-sense, single-stranded RNA viruses that reverse transcribe their RNA genomes into double-stranded DNA for integration into the host cell chromosome. The integrated provirus is used as a template for the transcription of viral RNA. The full-length viral RNA can be used for the translation of the Gag and Gag-Pol structural proteins or as the genomic RNA (gRNA) for encapsidation into new virions by the Gag protein. The mechanism by which Gag selectively incorporates unspliced gRNA into virus particles is poorly understood. Although Gag was previously thought to localize exclusively to the cytoplasm and plasma membrane where particles are released, we found that the Gag protein of Rous sarcoma virus, an alpharetrovirus, undergoes transient nuclear trafficking. When the nuclear export signal of RSV Gag is mutated (Gag.L219A), the protein accumulates in discrete subnuclear foci reminiscent of nuclear bodies such as splicing speckles, paraspeckles, and PML bodies. In this report, we observed that RSV Gag.L219A foci appeared to be tethered in the nucleus, partially co-localizing with the splicing speckle components SC35 and SF2. Overexpression of SC35 increased the number of Gag.L219A nucleoplasmic foci, suggesting that SC35 may facilitate the formation of Gag foci. We previously reported that RSV Gag nuclear trafficking is required for efficient gRNA packaging. Together with the data presented herein, our findings raise the intriguing hypothesis that RSV Gag may co-opt splicing factors to localize near transcription sites. Because splicing occurs co-transcriptionally, we speculate that this mechanism could allow Gag to associate with unspliced viral RNA shortly after its transcription initiation in the nucleus, before the viral RNA can be spliced or exported from the nucleus as an mRNA template.

5.
Viruses ; 5(11): 2767-95, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24253283

RESUMO

Retroviruses exploit nuclear trafficking machinery at several distinct stages in their replication cycles. In this review, we will focus primarily on nucleocytoplasmic trafficking events that occur after the completion of reverse transcription and proviral integration. First, we will discuss nuclear export of unspliced viral RNA transcripts, which serves two essential roles: as the mRNA template for the translation of viral structural proteins and as the genome for encapsidation into virions. These full-length viral RNAs must overcome the cell's quality control measures to leave the nucleus by co-opting host factors or encoding viral proteins to mediate nuclear export of unspliced viral RNAs. Next, we will summarize the most recent findings on the mechanisms of Gag nuclear trafficking and discuss potential roles for nuclear localization of Gag proteins in retrovirus replication.


Assuntos
Núcleo Celular/virologia , Infecções por Retroviridae/virologia , Retroviridae/fisiologia , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Animais , Humanos , Transporte Proteico , Retroviridae/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...