Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1061803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275256

RESUMO

Bacterial spot caused by Xanthomonas euvesicatoria is a major disease of pepper (Capsicum annuum L.) in warm and humid production environments. Use of genetically resistant cultivars is an effective approach to manage bacterial spot. Two recessive resistance genes, bs5 and bs6, confer non-race-specific resistance against bacterial spot. The objective of our study was to map these two loci in the pepper genome. We used a genotyping-by-sequencing approach to initially map the position of the two resistances. Segregating populations for bs5 and bs6 were developed by crossing susceptible Early CalWonder (ECW) with near-isogenic lines ECW50R (bs5 introgression) or ECW60R (bs6 introgression). Following fine-mapping, bs5 was delimited to a ~535 Kbp interval on chromosome 3, and bs6 to a ~666 Kbp interval in chromosome 6. We identified 14 and 8 candidate resistance genes for bs5 and bs6, respectively, based on predicted protein coding polymorphisms between ECW and the corresponding resistant parent. This research enhances marker-assisted selection of bs5 and bs6 in breeding programs and is a crucial step towards elucidating the molecular mechanisms underlying the resistances.

2.
PLoS One ; 15(5): e0233301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469926

RESUMO

Bacterial spot is a destructive disease of tomato in Florida that prior to the early 1990s was caused by Xanthomonas euvesicatoria. X. perforans was first identified in Florida in 1991 and by 2006 was the only xanthomonad associated with bacterial spot disease in tomato. The ability of an X. perforans strain to outcompete X. euvesicatoria both in vitro and in vivo was at least in part associated with the production of three bacteriocins designated Bcn-A, Bcn-B, and Bcn-C. The objective of this study was to characterize the genetic determinants of these bacteriocins. Bcn-A activity was confined to one locus consisting of five ORFs of which three (ORFA, ORF2 and ORF4) were required for bacteriocin activity. The fifth ORF is predicted to encode an immunity protein to Bcn-A based on in vitro and in vivo assays. The first ORF encodes Bcn-A, a 1,398 amino acid protein, which bioinformatic analysis predicts to be a member of the RHS family of toxins. Based on results of homology modeling, we hypothesize that the amino terminus of Bcn-A interacts with a protein in the outer membrane of X. euvesicatoria. The carboxy terminus of the protein may interact with an as yet unknown protein(s) and puncture the X. euvesicatoria membrane, thereby delivering the accessory proteins into the target and causing cell death. Bcn-A appears to be activated upon secretion based on cell fractionation assays. The other two loci were each shown to be single ORFs encoding Bcn-B and Bcn-C. Both gene products possess homology toward known proteases. Proteinase activity for both Bcn-B and Bcn-C was confirmed using a milk agar assay. Bcn-B is predicted to be an ArgC-like serine protease, which was confirmed by PMSF inhibition of proteolytic activity, whereas Bcn-C has greater than 50% amino acid sequence identity to two zinc metalloproteases.


Assuntos
Proteínas de Bactérias/genética , Bacteriocinas/genética , Loci Gênicos , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Xanthomonas/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Bacteriocinas/biossíntese , Homologia de Sequência , Xanthomonas/classificação , Xanthomonas/genética , Xanthomonas/metabolismo
3.
Phytopathology ; 108(12): 1402-1411, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29923802

RESUMO

Field trials were conducted at two locations in Florida to evaluate transgenic tomato expressing the ELONGATION FACTOR TU RECEPTOR (EFR) gene from Arabidopsis thaliana, the Bs2 gene from pepper, or both Bs2 and EFR (Bs2/EFR) for managing bacterial wilt caused by Ralstonia solanacearum and bacterial spot caused by Xanthomonas perforans. Expression of EFR or Bs2/EFR in the susceptible genotype Fla. 8000 significantly reduced bacterial wilt incidence (50 to 100%) and increased total yield (57 to 114%) relative to lines expressing only Bs2 or the nontransformed Fla. 8000 control, although the marketable yield was not significantly affected. Following harvest, surviving symptomatic and nonsymptomatic plants were assessed for colonization by R. solanacearum. There were no significant differences in the population at the lower stem. Interestingly, in the middle stem, no bacteria could be recovered from EFR or Bs2/EFR lines but viable bacterial populations were recovered from Bs2 and nontransformed control lines at 102 to 105 CFU/g of stem tissue. In growth-chamber experiments, the EFR transgenic tomato lines were found to be effective against seven different R. solanacearum strains isolated from the southeastern United States, indicating utility across the southeastern United States. In all of the bacterial spot trials, EFR and Bs2/EFR lines had significantly reduced disease severity (22 to 98%) compared with the Fla. 8000 control. The marketable and total yield of Bs2/EFR were significantly higher (43 to 170%) than Fla. 8000 control in three of four field trials. These results demonstrate for the first time the potential of using the EFR gene for field management of bacterial wilt and bacterial spot diseases of tomato.


Assuntos
Proteínas de Arabidopsis/metabolismo , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo , Solanum lycopersicum/genética , Xanthomonas/fisiologia , Proteínas de Arabidopsis/genética , Florida , Expressão Gênica , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Receptores de Reconhecimento de Padrão/genética
4.
Mol Plant Pathol ; 18(7): 976-989, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27362693

RESUMO

Xanthomonas citri ssp. citri (X. citri), causal agent of citrus canker, uses transcription activator-like effectors (TALEs) as major pathogenicity factors. TALEs, which are delivered into plant cells through the type III secretion system (T3SS), interact with effector binding elements (EBEs) in host genomes to activate the expression of downstream susceptibility genes to promote disease. Predictably, TALEs bind EBEs in host promoters via known combinations of TALE amino acids to DNA bases, known as the TALE code. We introduced 14 EBEs, matching distinct X. citri TALEs, into the promoter of the pepper Bs3 gene (ProBs31EBE ), and fused this engineered promoter with multiple EBEs (ProBs314EBE ) to either the ß-glucuronidase (GUS) reporter gene or the coding sequence (cds) of the pepper gene, Bs3. TALE-induced expression of the Bs3 cds in citrus leaves resulted in no visible hypersensitive response (HR). Therefore, we utilized a different approach in which ProBs31EBE and ProBs314EBE were fused to the Xanthomonas gene, avrGf1, which encodes a bacterial effector that elicits an HR in grapefruit and sweet orange. We demonstrated, in transient assays, that activation of ProBs314EBE by X. citri TALEs is T3SS dependent, and that the expression of AvrGf1 triggers HR and correlates with reduced bacterial growth. We further demonstrated that all tested virulent X. citri strains from diverse geographical locations activate ProBs314EBE . TALEs are essential for the virulence of X. citri strains and, because the engineered promoter traps are activated by multiple TALEs, this concept has the potential to confer broad-spectrum, durable resistance to citrus canker in stably transformed plants.


Assuntos
Citrus/microbiologia , Genes Bacterianos , Engenharia Genética , Regiões Promotoras Genéticas , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Xanthomonas/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Capsicum/genética , Morte Celular , Reações Cruzadas , Regulação da Expressão Gênica de Plantas , Mutação/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Virulência/genética , Xanthomonas/crescimento & desenvolvimento
5.
Theor Appl Genet ; 126(3): 601-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117718

RESUMO

The RXopJ4 resistance locus from the wild accession Solanum pennellii (Sp) LA716 confers resistance to bacterial spot disease of tomato (S. lycopersicum, Sl) caused by Xanthomonas perforans (Xp). RXopJ4 resistance depends on recognition of the pathogen type III effector protein XopJ4. We used a collection of Sp introgression lines (ILs) to narrow the RXopJ4 locus to a 4.2-Mb segment on the long arm of chromosome 6, encompassed by the ILs 6-2 and 6-2-2. We then adapted or developed a collection of 14 molecular markers to map on a segregating F(2) population from a cross between the susceptible parent Sl FL8000 and the resistant parent RXopJ4 8000 OC(7). In the F(2) population, a 190-kb segment between the markers J350 and J352 cosegregated with resistance. This fine mapping will enable both the identification of candidate genes and the detection of resistant plants using cosegregating markers. The RXopJ4 resistance gene(s), in combination with other recently characterized genes and a quantitative trait locus (QTL) for bacterial spot disease resistance, will likely be an effective tool for the development of durable resistance in cultivated tomato.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Solanum/genética , Cromossomos de Plantas , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Solanum/microbiologia , Xanthomonas/isolamento & purificação
6.
Proc Natl Acad Sci U S A ; 109(47): 19480-5, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23132937

RESUMO

Transcription activator-like effector (TALE) proteins of the plant pathogenic bacterial genus Xanthomonas bind to and transcriptionally activate host susceptibility genes, promoting disease. Plant immune systems have taken advantage of this mechanism by evolving TALE binding sites upstream of resistance (R) genes. For example, the pepper Bs3 and rice Xa27 genes are hypersensitive reaction plant R genes that are transcriptionally activated by corresponding TALEs. Both R genes have a hallmark expression pattern in which their transcripts are detectable only in the presence and not the absence of the corresponding TALE. By transcriptome profiling using next-generation sequencing (RNA-seq), we tested whether we could avoid laborious positional cloning for the isolation of TALE-induced R genes. In a proof-of-principle experiment, RNA-seq was used to identify a candidate for Bs4C, an R gene from pepper that mediates recognition of the Xanthomonas TALE protein AvrBs4. We identified one major Bs4C candidate transcript by RNA-seq that was expressed exclusively in the presence of AvrBs4. Complementation studies confirmed that the candidate corresponds to the Bs4C gene and that an AvrBs4 binding site in the Bs4C promoter directs its transcriptional activation. Comparison of Bs4C with a nonfunctional allele that is unable to recognize AvrBs4 revealed a 2-bp polymorphism within the TALE binding site of the Bs4C promoter. Bs4C encodes a structurally unique R protein and Bs4C-like genes that are present in many solanaceous genomes seem to be as tightly regulated as pepper Bs4C. These findings demonstrate that TALE-specific R genes can be cloned from large-genome crops with a highly efficient RNA-seq approach.


Assuntos
Proteínas de Bactérias/metabolismo , Capsicum/genética , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia , Proteínas de Bactérias/química , Capsicum/efeitos dos fármacos , Capsicum/imunologia , Capsicum/microbiologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/microbiologia , Cicloeximida/farmacologia , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudos de Associação Genética , Doenças das Plantas/genética , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Efetores Semelhantes a Ativadores de Transcrição , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transcriptoma/genética , Xanthomonas/efeitos dos fármacos
7.
PLoS One ; 7(8): e42036, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870280

RESUMO

We investigated whether lines of transgenic tomato (Solanum lycopersicum) expressing the Bs2 resistance gene from pepper, a close relative of tomato, demonstrate improved resistance to bacterial spot disease caused by Xanthomonas species in replicated multi-year field trials under commercial type growing conditions. We report that the presence of the Bs2 gene in the highly susceptible VF 36 background reduced disease to extremely low levels, and VF 36-Bs2 plants displayed the lowest disease severity amongst all tomato varieties tested, including commercial and breeding lines with host resistance. Yields of marketable fruit from transgenic lines were typically 2.5 times that of the non-transformed parent line, but varied between 1.5 and 11.5 fold depending on weather conditions and disease pressure. Trials were conducted without application of any copper-based bactericides, presently in wide use despite negative impacts on the environment. This is the first demonstration of effective field resistance in a transgenic genotype based on a plant R gene and provides an opportunity for control of a devastating pathogen while eliminating ineffective copper pesticides.


Assuntos
Capsicum/genética , Resistência à Doença , Doenças das Plantas , Proteínas de Plantas/biossíntese , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Xanthomonas/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/microbiologia
8.
Mol Plant Microbe Interact ; 25(3): 307-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22112215

RESUMO

A novel hypersensitive resistance (HR) in Capsicum baccatum var. pendulum against the bacterial spot of pepper pathogen, Xanthomonas gardneri, was introgressed into C. annuum cv. Early Calwonder (ECW) to create the near-isogenic line designated as ECW-70R. A corresponding avirulence gene avrBs7, in X. gardneri elicited a strong HR in ECW-70R. A homolog of avrBs7, avrBs1.1, was found in X. euvesicatoria 85-10, which showed delayed HR on ECW-70R leaves. Genetic analysis confirmed the presence of a single dominant resistance gene, Bs7, corresponding to the two avr genes. Both AvrBs7 and AvrBs1.1 share a consensus protein tyrosine phosphatase (PTP) active site domain and can dephosphorylate para-nitrophenyl phosphate. Mutation of Cys(265) to Ser in the PTP domain and subsequent loss of enzymatic activity and HR activity indicated the importance of the PTP domain in the recognition of the Avr protein by the Bs7 gene transcripts. Superpositioning of AvrBs7 and AvrBs1.1 homology models indicated variation in the geometry of the loops adjacent to the active sites. These predicted structural differences might be responsible for the differences in HR timing due to differential activation of the resistance gene. Mutating the PTP domain of AvrBs1.1 to match that of AvrBs7 failed to activate HR on ECW-70R, indicating the possibility of differential substrate specificities between AvrBs1.1 and AvrBs7.


Assuntos
Proteínas de Bactérias/genética , Capsicum/microbiologia , Domínio Catalítico/genética , Doenças das Plantas/microbiologia , Xanthomonas/genética , Xanthomonas/patogenicidade , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Capsicum/imunologia , Resistência à Doença/genética , Expressão Gênica , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Folhas de Planta/microbiologia , Plasmídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato , Fatores de Tempo , Virulência , Xanthomonas/enzimologia , Xanthomonas/fisiologia
9.
Theor Appl Genet ; 121(1): 37-46, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20180094

RESUMO

Bacterial spot, one of the most damaging diseases of pepper, is caused by Xanthomonas euvesicatoria. This pathogen has worldwide distribution and it is particularly devastating in tropical and sub-tropical regions where high temperatures and frequent precipitation provide ideal conditions for disease development. Three dominant resistance genes have been deployed singly and in combination in commercial cultivars, but have been rendered ineffectual by the high mutation rate or deletion of the corresponding cognate effector genes. These genes are missing in race P6, and their absence makes this race virulent on all commercial pepper cultivars. The breeding line ECW12346 is the only source of resistance to race P6 in Capsicum annuum, and displays a non-hypersensitive type of resistance. Characterization of this resistance has identified two recessive genes: bs5 and bs6. Individual analysis of these genes revealed that bs5 confers a greater level of resistance than bs6 at 25 degrees C, but in combination they confer full resistance to P6 indicating at least additive gene action. Tests carried out at 30 degrees C showed that both resistances are compromised to a significant extent, but in combination they provide almost full resistance to race P6 indicating a positive epistatic interaction at high temperatures. A scan of the pepper genome with restriction fragment length polymorphism and AFLP markers led to the identification of a set of AFLP markers for bs5. Allele-specific primers for a PCR-based bs5-marker have been developed to facilitate the genetic manipulation of this gene.


Assuntos
Capsicum , Genes de Plantas , Genes Recessivos , Imunidade Inata/genética , Doenças das Plantas , Xanthomonas/patogenicidade , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Capsicum/genética , Capsicum/imunologia , Capsicum/microbiologia , Ligação Genética , Marcadores Genéticos , Dados de Sequência Molecular , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Polimorfismo Genético , Xanthomonas/imunologia
10.
Annu Rev Phytopathol ; 47: 265-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19400644

RESUMO

Both hypersensitive and quantitative forms of resistance to the bacterial spot pathogens (Xanthomonas spp.) occur in pepper and tomato. Five resistance genes involved in hypersensitivity in pepper and four in tomato have been identified so far. The corresponding pathogen avirulence genes have been cloned and characterized, and features, including a propensity for accumulating mutations and at times, loss of plasmid-borne avirulence genes, are known to occur. The frequency of these changes affects race composition among pathogen populations and determines the durability of the corresponding plant resistance. At least four different species of Xanthomonas are known to cause bacterial spot, and these can differ in specific avirulence gene content. Quantitative or multigenic resistance has also more recently been researched and appears to be more durable than the hypersensitive resistance. Two recessive genes have been identified that yield a nonhypersensitive form of resistance in pepper and together can provide strong resistance. More emphasis is being given to transfer of quantitative trait resistance to commercial cultivars of both tomato and pepper.


Assuntos
Capsicum/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/imunologia , Xanthomonas/fisiologia , Capsicum/genética , Capsicum/microbiologia , Genes Bacterianos , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/genética , Plantas/genética , Plantas/imunologia , Plantas/microbiologia
11.
Mol Plant Pathol ; 10(2): 249-62, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19236573

RESUMO

We provide the first conclusive evidence that Xanthomonas axonopodis pv. citri Asiatic strain (Xac-A) and, in particular, Xac-A(w), a unique citrus canker A strain isolated from Key lime in Wellington, Florida, induces a hypersensitive reaction (HR) in grapefruit leaves. Using the heterologous tomato pathogen X. perforans, as a recipient of the Xac-A(w) genomic library, we identified a 1599-bp open reading frame responsible for HR in grapefruit, but not Key lime, and designated it avrGf1. Xac-A(w)DeltaavrGf1 produced typical, although visibly reduced, citrus canker symptoms (i.e. raised pustules) in grapefruit and typical canker symptoms in Key lime. We also determined that the X. perforans transconjugant carrying an Xac-A(w) hrpG elicited HR in grapefruit and Key lime leaves, and that xopA in X. perforans was partly responsible for HR. Xac-A transconjugants carrying the X. perforans xopA were reduced in ability to grow in grapefruit leaves relative to wild-type Xac-A. The X. perforans xopA appears to be a host-limiting factor. An avrBs3 homologue, which contained 18.5 repeats and induced HR in tomato, was designated avrTaw. This gene, when expressed in a pustule-minus Xac-A(w), did not complement pustule formation; however, pthA(w), a functional pthA homologue, complemented the mutant strain to produce typical pustules in Key lime, but markedly reduced pustules in grapefruit. Both avrBs3 homologues, when expressed in a typical Xac-A strain, resulted in typical citrus canker pustules in grapefruit, indicating that neither homologue suppressed pustule size in grapefruit. Xac-A(w) contains other unidentified factors that suppress development in grapefruit.


Assuntos
Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Xanthomonas/genética , Proteínas de Bactérias/metabolismo , Citrus aurantiifolia/microbiologia , Citrus paradisi/imunologia , Citrus paradisi/microbiologia , Biblioteca Gênica , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Seleção Genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Virulência , Xanthomonas/patogenicidade
12.
New Phytol ; 179(2): 546-556, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19086184

RESUMO

Many phytopathogenic bacteria inject virulence effector proteins into plant cells. To identify novel virulence effectors of the bacterial plant pathogen Xanthomonas, a worldwide collection of pepper (Capsicum annuum) pathogenic Xanthomonas strains was studied. Xanthomonas gardneri strains produced in pepper enhanced watersoaking, a phenotype that is typical of a compatible interaction. Transfer of X. gardneri library clones into a Xanthomonas euvesicatoria recipient strain revealed that enhanced watersoaking was attributable to avrHah1 (avirulence (avr) gene homologous to avrBs3 and hax2, No. 1), a novel avrBs3-like gene. avrHah1 is a novel member of the avrBs3 family that encodes tandemly arranged repeat units of both 34 and 35 amino acid lengths. Although AvrHah1 is only distantly related to AvrBs3, it was shown to trigger a Bs3-dependent hypersensitive response (HR). When fused to a nuclear export signal, AvrHah1 is no longer capable of triggering a Bs3 HR, indicating that nuclear targeting of AvrHah1 is crucial to its recognition. Phylogenetic analysis revealed that, although AvrBs3 and AvrHah1 are only distantly related, they share blocks of high homology within potentially solvent-exposed repeat units. Thus, these data suggest that the recognition specificity of AvrBs3-like proteins is predominantly determined by solvent-exposed residues, rather than by overall homology or repeat unit length.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Capsicum/genética , Capsicum/metabolismo , Capsicum/microbiologia , Medicamentos de Ervas Chinesas , Regulação Bacteriana da Expressão Gênica/fisiologia , Genótipo , Dados de Sequência Molecular , Mutação , Folhas de Planta/microbiologia , Nicotiana/metabolismo , Nicotiana/microbiologia , Virulência
13.
Appl Environ Microbiol ; 71(12): 8284-91, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332814

RESUMO

We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.


Assuntos
Cromossomos Bacterianos , Cobre/farmacologia , Farmacorresistência Bacteriana/genética , Família Multigênica , Xanthomonas campestris/genética , Sequência de Bases , Southern Blotting , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Campo Pulsado , Escherichia coli/genética , Genes Bacterianos , Dados de Sequência Molecular , Plasmídeos/genética , Reação em Cadeia da Polimerase , Mapeamento por Restrição , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Xanthomonas campestris/efeitos dos fármacos , Xanthomonas campestris/crescimento & desenvolvimento , Xanthomonas campestris/metabolismo
14.
Syst Appl Microbiol ; 27(6): 755-62, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15612634

RESUMO

Four phenotypic xanthomonad groups have been identified that are pathogenic to pepper, tomato, or both hosts. These include groups A and C which are found in Xanthomonas axonopodis pv. vesicatoria, group B found in X. vesicatoria, and group D found in 'X. gardneri'. We present DNA:DNA hybridization data in which X. axonopodis pv. vesicatoria group A and C strains have less than 70% DNA relatedness with each other, with the type strain of X. axonopodis, and with the currently classified species within Xanthomonas and, therefore, should be removed from this species and given species status. We present information that the A strains most closely resemble the strains originally isolated by Doidge in 1921. In an attempt to avoid confusion in nomenclature as stated in Principle 1 of the Bacteriological Code, we propose that the A strains of X. axonopodis pv. vesicatoria be renamed as X. euvesicatoria (ATCC11633T= NCPPB2968T = ICMP 109T = ICMP 98T). Use of the euvesicatoria epithet should be reserved for strains originally identified by Doidge, which she designated Bacterium vesicatorium (Ann. Appl. Biol. 7: 407-430, 1921) in the original description when she referred to those strains as being feebly amylolytic. The name X. perforans sp. nov. is proposed for the C group of strains previously designated as X. axonopodis pv. vesicatoria (ATCC BAA-983T = NCPPB 4321T). We also propose that 'X. gardneri', which has less than 70% DNA relatedness with any of the Xanthomonas species and which has never had taxonomic status, be named X. gardneri (ATCC 19865T = NCPPB 881T) to reflect the specific epithet proposed by Sutic in 1957.


Assuntos
Capsicum/microbiologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Xanthomonas/classificação , Xanthomonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Hibridização de Ácido Nucleico , Xanthomonas/genética , Xanthomonas/metabolismo
15.
Plant Dis ; 88(11): 1179-1188, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30795311

RESUMO

In the Wellington and Lake Worth areas of Palm Beach County, FL, citrus canker appeared on Key/Mexican lime (Citrus aurantiifolia) and alemow (C. macrophylla) trees over a period of about 6 to 7 years before detection, but nearby canker-susceptible citrus, such as grapefruit (C. × paradisi) and sweet orange (C. sinensis), were unaffected. Colonies of the causal bacterium, isolated from leaf, stem, and fruit lesions, appeared similar to the Asiatic group of strains of Xanthomonas axonopodis pv. citri (Xac-A) on the nutrient agar plate, but the growth on lima bean agar slants was less mucoid. The bacterium produced erumpent, pustule-like lesions of typical Asiatic citrus canker syndrome after inoculation into Key/Mexican lime, but brownish, flat, and necrotic lesions on the leaves of Duncan grapefruit, Madame Vinous sweet orange, sour orange (C. aurantium), citron (C. medica), Orlando tangelo (C. reticulata × C. × paradisi), and trifoliate orange (Poncirus trifoliata). The bacterium did not react with the Xac-A specific monoclonal antibody A1 using enzyme-linked immunosorbent assay (ELISA) and could not be detected by polymerase chain reaction (PCR)-based assays using primers selected for Xac-A. DNA reassociation analysis confirmed that the pathogen, designated as Xac-AW, was more closely related to Xac-A and Xac-A* strains than X. axonopodis pv. aurantifolii or the citrus bacterial spot pathogen (X. axonopodis pv. citrumelo). The strain can be easily differentiated from Xac-A and Xac-A* using ELISA, PCR-based tests, fatty acid analysis, pulsed-field gel electrophoresis of genomic DNA, and host specificity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...