Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Cogn Neurodyn ; 18(2): 519-537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699618

RESUMO

A novel network version of permutation entropy, the inverted joint permutation entropy (JPEinv), holds potential as non-invasive biomarker of abnormal excitation-inhibition (E-I) ratio in Alzheimer's disease (AD). In this computational modelling study, we test the hypotheses that this metric, and related measures of signal variability and functional connectivity, are sensitive to altered E-I ratios. The E-I ratio in each neural mass of a whole-brain computational network model was systematically varied. We evaluated whether JPEinv, local signal variability (by permutation entropy) and functional connectivity (by weighted symbolic mutual information (wsMI)) were related to E-I ratio, on whole-brain and regional level. The hub disruption index can identify regions primarily affected in terms of functional connectivity strength (or: degree) by the altered E-I ratios. Analyses were performed for a range of coupling strengths, filter and time-delay settings. On whole-brain level, higher E-I ratios were associated with higher functional connectivity (by JPEinv and wsMI) and lower local signal variability. These relationships were nonlinear and depended on the coupling strength, filter and time-delay settings. On regional level, hub-like regions showed a selective decrease in functional degree (by JPEinv and wsMI) upon a lower E-I ratio, and non-hub-like regions showed a selective increase in degree upon a higher E-I ratio. These results suggest that abnormal functional connectivity and signal variability, as previously reported in patients across the AD continuum, can inform us about altered E-I ratios. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10003-x.

2.
J Neurooncol ; 166(3): 523-533, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308803

RESUMO

PURPOSE: Glioma is associated with pathologically high (peri)tumoral brain activity, which relates to faster progression. Functional connectivity is disturbed locally and throughout the entire brain, associating with symptomatology. We, therefore, investigated how local activity and network measures relate to better understand how the intricate relationship between the tumor and the rest of the brain may impact disease and symptom progression. METHODS: We obtained magnetoencephalography in 84 de novo glioma patients and 61 matched healthy controls. The offset of the power spectrum, a proxy of neuronal activity, was calculated for 210 cortical regions. We calculated patients' regional deviations in delta, theta and lower alpha network connectivity as compared to controls, using two network measures: clustering coefficient (local connectivity) and eigenvector centrality (integrative connectivity). We then tested group differences in activity and connectivity between (peri)tumoral, contralateral homologue regions, and the rest of the brain. We also correlated regional offset to connectivity. RESULTS: As expected, patients' (peri)tumoral activity was pathologically high, and patients showed higher clustering and lower centrality than controls. At the group-level, regionally high activity related to high clustering in controls and patients alike. However, within-patient analyses revealed negative associations between regional deviations in brain activity and clustering, such that pathologically high activity coincided with low network clustering, while regions with 'normal' activity levels showed high network clustering. CONCLUSION: Our results indicate that pathological activity and connectivity co-localize in a complex manner in glioma. This insight is relevant to our understanding of disease progression and cognitive symptomatology.


Assuntos
Mapeamento Encefálico , Glioma , Humanos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Magnetoencefalografia , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética
3.
Sci Rep ; 14(1): 2950, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316863

RESUMO

After severe brain injury, zolpidem is known to cause spectacular, often short-lived, restorations of brain functions in a small subgroup of patients. Previously, we showed that these zolpidem-induced neurological recoveries can be paralleled by significant changes in functional connectivity throughout the brain. Deep brain stimulation (DBS) is a neurosurgical intervention known to modulate functional connectivity in a wide variety of neurological disorders. In this study, we used DBS to restore arousal and motivation in a zolpidem-responsive patient with severe brain injury and a concomitant disorder of diminished motivation, more than 10 years after surviving hypoxic ischemia. We found that DBS of the central thalamus, targeted at the centromedian-parafascicular complex, immediately restored arousal and was able to transition the patient from a state of deep sleep to full wakefulness. Moreover, DBS was associated with temporary restoration of communication and ability to walk and eat in an otherwise wheelchair-bound and mute patient. With the use of magnetoencephalography (MEG), we revealed that DBS was generally associated with a marked decrease in aberrantly high levels of functional connectivity throughout the brain, mimicking the effects of zolpidem. These results imply that 'pathological hyperconnectivity' after severe brain injury can be associated with reduced arousal and behavioral performance and that DBS is able to modulate connectivity towards a 'healthier baseline' with lower synchronization, and, can restore functional brain networks long after severe brain injury. The presence of hyperconnectivity after brain injury may be a possible future marker for a patient's responsiveness for restorative interventions, such as DBS, and suggests that lower degrees of overall brain synchronization may be conducive to cognition and behavioral responsiveness.


Assuntos
Afasia Acinética , Lesões Encefálicas , Estimulação Encefálica Profunda , Humanos , Estimulação Encefálica Profunda/métodos , Zolpidem , Motivação , Tálamo/fisiologia , Nível de Alerta/fisiologia
4.
J Neurol ; 271(4): 1649-1662, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278979

RESUMO

BACKGROUND: Cognitive treatment response varies highly in people with multiple sclerosis (PwMS). Identification of mechanisms is essential for predicting response. OBJECTIVES: This study aimed to investigate whether brain network function predicts response to cognitive rehabilitation therapy (CRT) and mindfulness-based cognitive therapy (MBCT). METHODS: PwMS with cognitive complaints completed CRT, MBCT, or enhanced treatment as usual (ETAU) and performed three measurements (baseline, post-treatment, 6-month follow-up). Baseline magnetoencephalography (MEG) measures were used to predict treatment effects on cognitive complaints, personalized cognitive goals, and information processing speed (IPS) using mixed models (secondary analysis REMIND-MS study). RESULTS: We included 105 PwMS (96 included in prediction analyses; 32 CRT, 31 MBCT, 33 ETAU), and 56 healthy controls with baseline MEG. MEG did not predict reductions in complaints. Higher connectivity predicted better goal achievement after MBCT (p = 0.010) and CRT (p = 0.018). Lower gamma power (p = 0.006) and higher connectivity (p = 0.020) predicted larger IPS benefits after MBCT. These MEG predictors indicated worse brain function compared to healthy controls (p < 0.05). CONCLUSIONS: Brain network function predicted better cognitive goal achievement after MBCT and CRT, and IPS improvements after MBCT. PwMS with neuronal slowing and hyperconnectivity were most prone to show treatment response, making network function a promising tool for personalized treatment recommendations. TRIAL REGISTRATION: The REMIND-MS study was prospectively registered in the Dutch Trial registry (NL6285; https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6459 ).


Assuntos
Terapia Cognitivo-Comportamental , Atenção Plena , Esclerose Múltipla , Humanos , Treino Cognitivo , Encéfalo , Resultado do Tratamento
5.
PLoS Comput Biol ; 20(1): e1011164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232116

RESUMO

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique with potential for counteracting disrupted brain network activity in Alzheimer's disease (AD) to improve cognition. However, the results of tDCS studies in AD have been variable due to different methodological choices such as electrode placement. To address this, a virtual brain network model of AD was used to explore tDCS optimization. We compared a large, representative set of virtual tDCS intervention setups, to identify the theoretically optimized tDCS electrode positions for restoring functional network features disrupted in AD. We simulated 20 tDCS setups using a computational dynamic network model of 78 neural masses coupled according to human structural topology. AD network damage was simulated using an activity-dependent degeneration algorithm. Current flow modeling was used to estimate tDCS-targeted cortical regions for different electrode positions, and excitability of the pyramidal neurons of the corresponding neural masses was modulated to simulate tDCS. Outcome measures were relative power spectral density (alpha bands, 8-10 Hz and 10-13 Hz), total spectral power, posterior alpha peak frequency, and connectivity measures phase lag index (PLI) and amplitude envelope correlation (AEC). Virtual tDCS performance varied, with optimized strategies improving all outcome measures, while others caused further deterioration. The best performing setup involved right parietal anodal stimulation, with a contralateral supraorbital cathode. A clear correlation between the network role of stimulated regions and tDCS success was not observed. This modeling-informed approach can guide and perhaps accelerate tDCS therapy development and enhance our understanding of tDCS effects. Follow-up studies will compare the general predictions to personalized virtual models and validate them with tDCS-magnetoencephalography (MEG) in a clinical AD patient cohort.


Assuntos
Doença de Alzheimer , Estimulação Transcraniana por Corrente Contínua , Humanos , Doença de Alzheimer/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/fisiologia , Magnetoencefalografia , Redes Neurais de Computação
6.
Front Neurosci ; 17: 1176825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781262

RESUMO

Introduction: Resting-state EEG (rsEEG) characteristics, such as functional connectivity and network topology, are studied as potential biomarkers in psychiatric research. However, the presence of psychopharmacological treatment in study participants poses a potential confounding factor in biomarker research. To address this concern, our study aims to explore the impact of both single and multi-class psychotropic treatments on aforementioned rsEEG characteristics in a psychiatric population. Methods: RsEEG was analyzed in a real-world cross-sectional sample of 900 hospital-admitted psychiatric patients. Patients were clustered into eight psychopharmacological groups: unmedicated, single-class treatment with antipsychotics (AP), antidepressants (AD) or benzodiazepines (BDZ), and multi-class combinations of these treatments. To assess the associations between psychotropic treatments and the macroscale rsEEG characteristics mentioned above, we employed a general linear model with post-hoc tests. Additionally, Spearman's rank correlation analyses were performed to explore potential dosage effects. Results: Compared to unmedicated patients, single-class use of AD was associated with lower functional connectivity in the delta band, while AP was associated with lower functional connectivity in both the delta and alpha bands. Single-class use of BDZ was associated with widespread rsEEG differences, including lower functional connectivity across frequency bands and a different network topology within the beta band relative to unmedicated patients. All of the multi-class groups showed associations with functional connectivity or topology measures, but effects were most pronounced for concomitant use of all three classes of psychotropics. Differences were not only observed in comparison with unmedicated patients, but were also evident in comparisons between single-class, multi-class, and single/multi-class groups. Importantly, multi-class associations with rsEEG characteristics were found even in the absence of single-class associations, suggesting potential cumulative or interaction effects of different classes of psychotropics. Dosage correlations were only found for antipsychotics. Conclusion: Our exploratory, cross-sectional study suggests small but significant associations between single and multi-class use of antidepressants, antipsychotics and benzodiazepines and macroscale rsEEG functional connectivity and network topology characteristics. These findings highlight the importance of considering the effects of specific psychotropics, as well as their interactions, when investigating rsEEG biomarkers in a medicated psychiatric population.

7.
Alzheimers Res Ther ; 15(1): 182, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858173

RESUMO

BACKGROUND: To enable successful inclusion of electroencephalography (EEG) outcome measures in Alzheimer's disease (AD) clinical trials, we retrospectively mapped the progression of resting-state EEG measures over time in amyloid-positive patients with mild cognitive impairment (MCI) or dementia due to AD. METHODS: Resting-state 21-channel EEG was recorded in 148 amyloid-positive AD patients (MCI, n = 88; dementia due to AD, n = 60). Two or more EEG recordings were available for all subjects. We computed whole-brain and regional relative power (i.e., theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz)), peak frequency, signal variability (i.e., theta permutation entropy), and functional connectivity values (i.e., alpha and beta corrected amplitude envelope correlation, theta phase lag index, weighted symbolic mutual information, inverted joint permutation entropy). Whole-group linear mixed effects models were used to model the development of EEG measures over time. Group-wise analysis was performed to investigate potential differences in change trajectories between the MCI and dementia subgroups. Finally, we estimated the minimum sample size required to detect different treatment effects (i.e., 50% less deterioration, stabilization, or 50% improvement) on the development of EEG measures over time, in hypothetical clinical trials of 1- or 2-year duration. RESULTS: Whole-group analysis revealed significant regional and global oscillatory slowing over time (i.e., increased relative theta power, decreased beta power), with strongest effects for temporal and parieto-occipital regions. Disease severity at baseline influenced the EEG measures' rates of change, with fastest deterioration reported in MCI patients. Only AD dementia patients displayed a significant decrease of the parieto-occipital peak frequency and theta signal variability over time. We estimate that 2-year trials, focusing on amyloid-positive MCI patients, require 36 subjects per arm (2 arms, 1:1 randomization, 80% power) to detect a stabilizing treatment effect on temporal relative theta power. CONCLUSIONS: Resting-state EEG measures could facilitate early detection of treatment effects on neuronal function in AD patients. Their sensitivity depends on the region-of-interest and disease severity of the study population. Conventional spectral measures, particularly recorded from temporal regions, present sensitive AD treatment monitoring markers.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Estudos Retrospectivos , Eletroencefalografia , Disfunção Cognitiva/diagnóstico , Encéfalo , Proteínas Amiloidogênicas
8.
Alzheimers Res Ther ; 15(1): 142, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608393

RESUMO

BACKGROUND: Studies in animal models of Alzheimer's disease (AD) have provided valuable insights into the molecular and cellular processes underlying neuronal network dysfunction. Whether and how AD-related neurophysiological alterations translate between mice and humans remains however uncertain. METHODS: We characterized neurophysiological alterations in mice and humans carrying AD mutations in the APP and/or PSEN1 genes, focusing on early pre-symptomatic changes. Longitudinal local field potential recordings were performed in APP/PS1 mice and cross-sectional magnetoencephalography recordings in human APP and/or PSEN1 mutation carriers. All recordings were acquired in the left frontal cortex, parietal cortex, and hippocampus. Spectral power and functional connectivity were analyzed and compared with wildtype control mice and healthy age-matched human subjects. RESULTS: APP/PS1 mice showed increased absolute power, especially at higher frequencies (beta and gamma) and predominantly between 3 and 6 moa. Relative power showed an overall shift from lower to higher frequencies over almost the entire recording period and across all three brain regions. Human mutation carriers, on the other hand, did not show changes in power except for an increase in relative theta power in the hippocampus. Mouse parietal cortex and hippocampal power spectra showed a characteristic peak at around 8 Hz which was not significantly altered in transgenic mice. Human power spectra showed a characteristic peak at around 9 Hz, the frequency of which was significantly reduced in mutation carriers. Significant alterations in functional connectivity were detected in theta, alpha, beta, and gamma frequency bands, but the exact frequency range and direction of change differed for APP/PS1 mice and human mutation carriers. CONCLUSIONS: Both mice and humans carrying APP and/or PSEN1 mutations show abnormal neurophysiological activity, but several measures do not translate one-to-one between species. Alterations in absolute and relative power in mice should be interpreted with care and may be due to overexpression of amyloid in combination with the absence of tau pathology and cholinergic degeneration. Future studies should explore whether changes in brain activity in other AD mouse models, for instance, those also including tau pathology, provide better translation to the human AD continuum.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Presenilina-1 , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Proteínas Amiloidogênicas , Camundongos Transgênicos , Mutação/genética , Presenilina-1/genética , Precursor de Proteína beta-Amiloide/genética
9.
Netw Neurosci ; 7(2): 811-843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397878

RESUMO

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but only leads to seizure freedom for roughly two in three patients. To address this problem, we designed a patient-specific epilepsy surgery model combining large-scale magnetoencephalography (MEG) brain networks with an epidemic spreading model. This simple model was enough to reproduce the stereo-tactical electroencephalography (SEEG) seizure propagation patterns of all patients (N = 15), when considering the resection areas (RA) as the epidemic seed. Moreover, the goodness of fit of the model predicted surgical outcome. Once adapted for each patient, the model can generate alternative hypothesis of the seizure onset zone and test different resection strategies in silico. Overall, our findings indicate that spreading models based on patient-specific MEG connectivity can be used to predict surgical outcomes, with better fit results and greater reduction on seizure propagation linked to higher likelihood of seizure freedom after surgery. Finally, we introduced a population model that can be individualized by considering only the patient-specific MEG network, and showed that it not only conserves but improves the group classification. Thus, it may pave the way to generalize this framework to patients without SEEG recordings, reduce the risk of overfitting and improve the stability of the analyses.

10.
Brain ; 146(10): 4040-4054, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279597

RESUMO

Recent studies on Alzheimer's disease (AD) suggest that tau proteins spread through the brain following neuronal connections. Several mechanisms could be involved in this process: spreading between brain regions that interact strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum. In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET from 57 subjects positive for amyloid-ß pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD (n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-ß pathology were included as controls (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based functional networks [in alpha (8-13 Hz) and beta (13-30 Hz) bands], a structural or diffusion network, starting from the middle and inferior temporal lobe. The group-level network of the control group was used as input for the model to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding stage as seeds. In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accuracy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET binding remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in the dementia stage. These results suggest that in addition to structural connections, functional connections play an important role in tau spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neuronal communication patterns should be taken into account when identifying targets for future therapy. Our results also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, other processes may be influential.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteínas tau , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/patologia , Estudos Transversais , Magnetoencefalografia , Neurônios/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo
11.
Netw Neurosci ; 7(1): 299-321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37339322

RESUMO

Executive functioning (EF) is a higher order cognitive process that is thought to depend on a network organization facilitating integration across subnetworks, in the context of which the central role of the fronto-parietal network (FPN) has been described across imaging and neurophysiological modalities. However, the potentially complementary unimodal information on the relevance of the FPN for EF has not yet been integrated. We employ a multilayer framework to allow for integration of different modalities into one 'network of networks.' We used diffusion MRI, resting-state functional MRI, MEG, and neuropsychological data obtained from 33 healthy adults to construct modality-specific single-layer networks as well as a single multilayer network per participant. We computed single-layer and multilayer eigenvector centrality of the FPN as a measure of integration in this network and examined their associations with EF. We found that higher multilayer FPN centrality, but not single-layer FPN centrality, was related to better EF. We did not find a statistically significant change in explained variance in EF when using the multilayer approach as compared to the single-layer measures. Overall, our results show the importance of FPN integration for EF and underline the promise of the multilayer framework toward better understanding cognitive functioning.

12.
Sci Rep ; 13(1): 7419, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150756

RESUMO

An early disruption of neuronal excitation-inhibition (E-I) balance in preclinical animal models of Alzheimer's disease (AD) has been frequently reported, but is difficult to measure directly and non-invasively in humans. Here, we examined known and novel neurophysiological measures sensitive to E-I in patients across the AD continuum. Resting-state magnetoencephalography (MEG) data of 86 amyloid-biomarker-confirmed subjects across the AD continuum (17 patients diagnosed with subjective cognitive decline, 18 with mild cognitive impairment (MCI) and 51 with dementia due to probable AD (AD dementia)), 46 healthy elderly and 20 young control subjects were reconstructed to source-space. E-I balance was investigated by detrended fluctuation analysis (DFA), a functional E/I (fE/I) algorithm, and the aperiodic exponent of the power spectrum. We found a disrupted E-I ratio in AD dementia patients specifically, by a lower DFA, and a shift towards higher excitation, by a higher fE/I and a lower aperiodic exponent. Healthy subjects showed lower fE/I ratios (< 1.0) than reported in previous literature, not explained by age or choice of an arbitrary threshold parameter, which warrants caution in interpretation of fE/I results. Correlation analyses showed that a lower DFA (E-I imbalance) and a lower aperiodic exponent (more excitation) was associated with a worse cognitive score in AD dementia patients. In contrast, a higher DFA in the hippocampi of MCI patients was associated with a worse cognitive score. This MEG-study showed E-I imbalance, likely due to increased excitation, in AD dementia, but not in early stage AD patients. To accurately determine the direction of shift in E-I balance, validations of the currently used markers and additional in vivo markers of E-I are required.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Progressão da Doença , Magnetoencefalografia , Biomarcadores
13.
Neuroimage Clin ; 38: 103431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187041

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for disabling fluctuations in motor symptoms in Parkinson's disease (PD) patients. However, iterative exploration of all individual contact points (four in each STN) by the clinician for optimal clinical effects may take months. OBJECTIVE: In this proof of concept study we explored whether magnetoencephalography (MEG) has the potential to noninvasively measure the effects of changing the active contact point of STN-DBS on spectral power and functional connectivity in PD patients, with the ultimate aim to aid in the process of selecting the optimal contact point, and perhaps reduce the time to achieve optimal stimulation settings. METHODS: The study included 30 PD patients who had undergone bilateral DBS of the STN. MEG was recorded during stimulation of each of the eight contact points separately (four on each side). Each stimulation position was projected on a vector running through the longitudinal axis of the STN, leading to one scalar value indicating a more dorsolateral or ventromedial contact point position. Using linear mixed models, the stimulation positions were correlated with band-specific absolute spectral power and functional connectivity of i) the motor cortex ipsilateral tot the stimulated side, ii) the whole brain. RESULTS: At group level, more dorsolateral stimulation was associated with lower low-beta absolute band power in the ipsilateral motor cortex (p = .019). More ventromedial stimulation was associated with higher whole-brain absolute delta (p = .001) and theta (p = .005) power, as well as higher whole-brain theta band functional connectivity (p = .040). At the level of the individual patient, switching the active contact point caused significant changes in spectral power, but the results were highly variable. CONCLUSIONS: We demonstrate for the first time that stimulation of the dorsolateral (motor) STN in PD patients is associated with lower low-beta power values in the motor cortex. Furthermore, our group-level data show that the location of the active contact point correlates with whole-brain brain activity and connectivity. As results in individual patients were quite variable, it remains unclear if MEG is useful in the selection of the optimal DBS contact point.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Magnetoencefalografia , Doença de Parkinson , Estudo de Prova de Conceito , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/anatomia & histologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Córtex Motor/fisiologia , Córtex Motor/fisiopatologia
14.
Brain Topogr ; 36(4): 566-580, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37154884

RESUMO

In this study of early functional changes in Parkinson's disease (PD), we aimed to provide a comprehensive assessment of the development of changes in both cortical and subcortical neurophysiological brain activity, including their association with clinical measures of disease severity. Repeated resting-state MEG recordings and clinical assessments were obtained in the context of a unique longitudinal cohort study over a seven-year period using a multiple longitudinal design. We used linear mixed-models to analyze the relationship between neurophysiological (spectral power and functional connectivity) and clinical data. At baseline, early-stage (drug-naïve) PD patients demonstrated spectral slowing compared to healthy controls in both subcortical and cortical brain regions, most outspoken in the latter. Over time, spectral slowing progressed in strong association with clinical measures of disease progression (cognitive and motor). Global functional connectivity was not different between groups at baseline and hardly changed over time. Therefore, investigation of associations with clinical measures of disease progression were not deemed useful. An analysis of individual connections demonstrated differences between groups at baseline (higher frontal theta, lower parieto-occipital alpha2 band functional connectivity) and over time in PD patients (increase in frontal delta and theta band functional connectivity). Our results suggest that spectral measures are promising candidates in the search for non-invasive markers of both early-stage PD and of the ongoing disease process.


Assuntos
Doença de Parkinson , Humanos , Magnetoencefalografia/métodos , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Progressão da Doença
15.
Brain Imaging Behav ; 17(4): 425-435, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37067658

RESUMO

Many patients with glioma, primary brain tumors, suffer from poorly understood executive functioning deficits before and/or after tumor resection. We aimed to test whether frontoparietal network centrality of multilayer networks, allowing for integration across multiple frequencies, relates to and predicts executive functioning in glioma. Patients with glioma (n = 37) underwent resting-state magnetoencephalography and neuropsychological tests assessing word fluency, inhibition, and set shifting before (T1) and one year after tumor resection (T2). We constructed binary multilayer networks comprising six layers, with each layer representing frequency-specific functional connectivity between source-localized time series of 78 cortical regions. Average frontoparietal network multilayer eigenvector centrality, a measure for network integration, was calculated at both time points. Regression analyses were used to investigate associations with executive functioning. At T1, lower multilayer integration (p = 0.017) and epilepsy (p = 0.006) associated with poorer set shifting (adj. R2 = 0.269). Decreasing multilayer integration (p = 0.022) and not undergoing chemotherapy at T2 (p = 0.004) related to deteriorating set shifting over time (adj. R2 = 0.283). No significant associations were found for word fluency or inhibition, nor did T1 multilayer integration predict changes in executive functioning. As expected, our results establish multilayer integration of the frontoparietal network as a cross-sectional and longitudinal correlate of executive functioning in glioma patients. However, multilayer integration did not predict postoperative changes in executive functioning, which together with the fact that this correlate is also found in health and other diseases, limits its specific clinical relevance in glioma.


Assuntos
Disfunção Cognitiva , Glioma , Humanos , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Glioma/patologia , Função Executiva
16.
Mult Scler ; 29(8): 1001-1011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36964707

RESUMO

BACKGROUND: Suboptimal performance during neuropsychological testing frequently occurs in multiple sclerosis (MS), leading to unreliable cognitive outcomes. Neurophysiological alterations correlate with MS-related cognitive impairment, but studies have not yet considered performance validity. OBJECTIVES: To investigate neurophysiological markers of cognitive impairment in MS, while explicitly addressing performance validity. METHODS: Magnetoencephalography recordings, neuropsychological assessments, and performance validity testing were obtained from 90 MS outpatients with cognitive complaints. Spectral and resting-state functional connectivity (rsFC) properties were compared between cognitively impaired (CI), cognitively preserved (CP), and suboptimally performing (SUB) patients using regression models and permutation testing. RESULTS: CI had higher power in low-frequency bands and lower power in high bands compared to CP, indicating neuronal slowing. CI also showed lower beta power compared to SUB. Overall power spectra visually differed between CI and CP, and SUB showed overlap with both groups. CI had lower rsFC than CP and SUB patients. CP and SUB patients showed no differences. CONCLUSION: Neuronal slowing and altered rsFC can be considered cognitive markers in MS. Patients who performed suboptimally showed resemblance with patients with and without cognitive impairments, and although their overall neurophysiological profile was more similar to patients without impairments, it suggests heterogeneity regarding their pathophysiology.


Assuntos
Encéfalo , Transtornos Cognitivos , Esclerose Múltipla , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Disfunção Cognitiva , Esclerose Múltipla/complicações , Imageamento por Ressonância Magnética , Magnetoencefalografia , Testes Neuropsicológicos , Encéfalo/diagnóstico por imagem
17.
Sci Rep ; 13(1): 4623, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944674

RESUMO

Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure.


Assuntos
Epilepsias Parciais , Epilepsia , Adulto , Criança , Humanos , Magnetoencefalografia/métodos , Convulsões/diagnóstico , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/cirurgia , Encéfalo
19.
Brain ; 145(10): 3654-3665, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130310

RESUMO

It is unclear why exactly gliomas show preferential occurrence in certain brain areas. Increased spiking activity around gliomas leads to faster tumour growth in animal models, while higher non-invasively measured brain activity is related to shorter survival in patients. However, it is unknown how regional intrinsic brain activity, as measured in healthy controls, relates to glioma occurrence. We first investigated whether gliomas occur more frequently in regions with intrinsically higher brain activity. Second, we explored whether intrinsic cortical activity at individual patients' tumour locations relates to tumour and patient characteristics. Across three cross-sectional cohorts, 413 patients were included. Individual tumour masks were created. Intrinsic regional brain activity was assessed through resting-state magnetoencephalography acquired in healthy controls and source-localized to 210 cortical brain regions. Brain activity was operationalized as: (i) broadband power; and (ii) offset of the aperiodic component of the power spectrum, which both reflect neuronal spiking of the underlying neuronal population. We additionally assessed (iii) the slope of the aperiodic component of the power spectrum, which is thought to reflect the neuronal excitation/inhibition ratio. First, correlation coefficients were calculated between group-level regional glioma occurrence, as obtained by concatenating tumour masks across patients, and group-averaged regional intrinsic brain activity. Second, intrinsic brain activity at specific tumour locations was calculated by overlaying patients' individual tumour masks with regional intrinsic brain activity of the controls and was associated with tumour and patient characteristics. As proposed, glioma preferentially occurred in brain regions characterized by higher intrinsic brain activity in controls as reflected by higher offset. Second, intrinsic brain activity at patients' individual tumour locations differed according to glioma subtype and performance status: the most malignant isocitrate dehydrogenase-wild-type glioblastoma patients had the lowest excitation/inhibition ratio at their individual tumour locations as compared to isocitrate dehydrogenase-mutant, 1p/19q-codeleted glioma patients, while a lower excitation/inhibition ratio related to poorer Karnofsky Performance Status, particularly in codeleted glioma patients. In conclusion, gliomas more frequently occur in cortical brain regions with intrinsically higher activity levels, suggesting that more active regions are more vulnerable to glioma development. Moreover, indices of healthy, intrinsic excitation/inhibition ratio at patients' individual tumour locations may capture both tumour biology and patients' performance status. These findings contribute to our understanding of the complex and bidirectional relationship between normal brain functioning and glioma growth, which is at the core of the relatively new field of 'cancer neuroscience'.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/patologia , Estudos Transversais , Mutação , Glioma/patologia , Encéfalo/patologia
20.
Sci Rep ; 12(1): 12932, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902627

RESUMO

Deep brain stimulation (DBS) of the central thalamus is an experimental treatment for restoration of impaired consciousness in patients with severe acquired brain injury. Previous results of experimental DBS are heterogeneous, but significant improvements in consciousness have been reported. However, the mechanism of action of DBS remains unknown. We used magnetoencephalography to study the direct effects of DBS of the central thalamus on oscillatory activity and functional connectivity throughout the brain in a patient with a prolonged minimally conscious state. Different DBS settings were used to improve consciousness, including two different stimulation frequencies (50 Hz and 130 Hz) with different effective volumes of tissue activation within the central thalamus. While both types of DBS resulted in a direct increase in arousal, we found that DBS with a lower frequency (50 Hz) and larger volume of tissue activation was associated with a stronger increase in functional connectivity and neural variability throughout the brain. Moreover, this form of DBS was associated with improvements in visual pursuit, a reduction in spasticity, and improvement of swallowing, eight years after loss of consciousness. However, after DBS, all neurophysiological markers remained significantly lower than in healthy controls and objective increases in consciousness remained limited. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of DBS of the central thalamus in humans and suggest that DBS can re-activate dormant functional brain networks, but that the severely injured stimulated brain still lacks the ability to serve cognitive demands.


Assuntos
Lesões Encefálicas , Estimulação Encefálica Profunda , Encéfalo , Lesões Encefálicas/terapia , Estimulação Encefálica Profunda/métodos , Humanos , Estado Vegetativo Persistente/terapia , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...