Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37086200

RESUMO

Adeno-associated virus (AAV) manufacturing has traditionally focused upon lab-scale techniques to culture and purify vector products, leading to limitations in production capacity. The tool presented in this paper assesses the feasibility of using non-scalable technologies at high AAV demands and identifies optimal flowsheets at large-scale that meet both cost and purity targets. The decisional tool comprises (a) a detailed process economics model with the relevant mass balance, sizing, and costing equations for AAV upstream and downstream technologies, (b) a built-in Monte Carlo simulation to assess uncertainties, and (c) a brute-force optimization algorithm for rapid investigation into the optimal purification combinations. The results overall highlighted that switching to more scalable upstream and downstream processing alternatives is economically advantageous. The base case analysis showed the cost and robustness advantages of utilizing suspension cell culture over adherent, as well as a fully chromatographic purification platform over batch ultracentrifugation. Expanding the set of purification options available gave insights into the optimal combination to satisfy both cost and purity targets. As the purity target increased, the optimal polishing solution moved from the non-capsid purifying multimodal chromatography to anion-exchange chromatography or continuous ultracentrifugation.

2.
Cytotherapy ; 23(8): 683-693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116945

RESUMO

BACKGROUND AIMS: Bioartificial liver devices (BALs) are categorized as advanced therapy medicinal products (ATMPs) with the potential to provide temporary liver support for liver failure patients. However, to meet commercial demands, next-generation BAL manufacturing processes need to be designed that are scalable and financially feasible. The authors describe the development and application of a process economics decisional tool to determine the cost of goods (COG) of alternative BAL process flowsheets across a range of industrial scales. METHODS: The decisional tool comprised an information database linked to a process economics engine, with equipment sizing, resource consumption, capital investment and COG calculations for the whole bioprocess, from cell expansion and encapsulation to fluidized bed bioreactor (FBB) culture to cryopreservation and cryorecovery. Four different flowsheet configurations were evaluated across demands, with cell factories or microcarriers in suspension culture for the cell expansion step and single-use or stainless steel technology for the FBB culture step. RESULTS: The tool outputs demonstrated that the lowest COG was achieved with microcarriers and stainless steel technology independent of the annual demand (1500-30 000 BALs/year). The analysis identified the key cost drivers were parameters impacting the medium volume and cost. CONCLUSIONS: The tool outputs can be used to identify cost-effective and scalable bioprocesses early in the development process and minimize the risk of failing to meet commercial demands due to technology choices. The tool predictions serve as a useful benchmark for manufacturing ATMPs.


Assuntos
Fígado Artificial , Reatores Biológicos , Análise Custo-Benefício , Humanos
3.
Biotechnol J ; 16(4): e2000238, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33231912

RESUMO

Continuous improvements of cell-free synthesis (CFS) systems have generated interest in adopting the technology for the manufacture of biologics. This paper provides an evaluation of the manufacturing cost-effectiveness of CFS for the commercial production of antibody-drug conjugates (ADCs). The evaluation was performed using an advanced techno-economic engine (TEE) built in Python. The TEE is programmed in an object-oriented environment capable of simulating a plethora of process flowsheets and predicting size and cost metrics for the process and the facility. A case study was formulated to compare the economics of whole bioprocesses based on either a CFS system or a mammalian cell system (CHO) for the manufacture of an ADC at a range of product demands. The analysis demonstrated the potential of CFS for the commercial manufacture of biologics and identified key cost drivers related to the system. The CFS system showed an approximately 80% increase in the cost of goods compared to CHO with a significant cost attributed to the in-house manufacture of the bacterial cell extract, necessary for the CFS reaction step in the process. A sensitivity and target analysis highlighted the need for further process improvements especially in the titer for the CFS process to become more competitive against well-established systems.


Assuntos
Imunoconjugados , Animais , Análise Custo-Benefício
4.
Sci Total Environ ; 737: 140333, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783873

RESUMO

While the effects of fuel composition on primary vehicle emissions have been well studied, less is known about the effects on secondary aerosol formation and composition. The propensity of light-duty gasoline engines to form secondary aerosol and contribute to regional air quality burdens are of scientific interest. This study assessed secondary aerosol formation and composition due to photochemical aging of exhaust emissions from a light-duty vehicle equipped with gasoline direct injection (GDI) engine. The vehicle was operated on eight fuels with varying ethanol and aromatic levels. Testing was performed over the LA92 cycle using a chassis dynamometer. The aging studies were performed using a mobile environmental chamber. Diluted exhaust emissions were introduced to the mobile chamber over the course of the LA92 cycle and subsequently photochemically reacted. It was found that secondary aerosol mass exceeded the primary particulate matter (PM) emissions. Secondary aerosol was primarily composed of ammonium nitrate due to the elevated tailpipe ammonia emissions. The high aromatic fuels produced greater total carbonaceous aerosol and secondary organic aerosol (SOA) compared to the low aromatic fuels. A clear influence of ethanol for the high aromatic fuels on SOA formation was observed, with greater SOA formation for the fuels with higher ethanol contents. Our results suggest that more SOA formation is expected from current GDI vehicles when operated with gasoline fuels rich with heavier aromatics and blended with higher ethanol levels.

5.
Toxins (Basel) ; 12(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408606

RESUMO

To date, there has been great demand for ecofriendly nematicides with beneficial properties to the nematode hosting plants. Great efforts are made towards the chemical characterization of botanical extracts exhibiting nematicidal activity against Meloidogyne spp., but only a small percentage of these data are actually used by the chemical industry in order to develop new formulates. On the other hand, the ready to use farmer produced water extracts based on edible plants could be a sustainable and economic solution for low income countries. Herein, we evaluate the nematicidal potential of Stevia rebaudiana grown in Greece against Meloidogyne incognita and Meloidogyne javanica, two most notorious phytoparasitic nematode species causing great losses in tomato cultivation worldwide. In an effort to recycle the plant's remnants, after leaves selection for commercial use, we use both leaves and wooden stems to test for activity. In vitro tests demonstrate significant paralysis activity of both plant parts' water extracts against the second-stage juvenile (J2) of the parasites; while, in vivo bioassays demonstrated the substantial efficacy of leaves' powder (95% at 1 g kg-1) followed by stems. Interestingly, the incorporation of up to 50 g powder/kg of soil is not phytotoxic, which demonstrates the ability to elevate the applied concentration of the nematicidal stevia powder under high inoculum level. Last but not least, the chemical composition analyses using cutting edge analytical methodologies, demonstrated amongst components molecules of already proven nematicidal activity, was exemplified by several flavonoids and essential oil components. Interestingly, and to our knowledge, for the flavonoids, morin and robinin, the anthocyanidin, keracyanin, and a napthalen-2-ol derivative is their first report in Stevia species.


Assuntos
Antinematódeos/farmacologia , Agentes de Controle Biológico/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Solanum lycopersicum/parasitologia , Stevia , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/isolamento & purificação , Agentes de Controle Biológico/isolamento & purificação , Relação Dose-Resposta a Droga , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta/parasitologia , Raízes de Plantas/parasitologia , Caules de Planta/parasitologia , Stevia/química , Tylenchoidea/crescimento & desenvolvimento
6.
MAbs ; 12(1): 1754999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32449439

RESUMO

This study aims to benchmark and analyze the process development and manufacturing costs across the biopharmaceutical drug development cycle and their contribution to overall research and development (R&D) costs. This was achieved with a biopharmaceutical drug development lifecycle cost model that captured the costs, durations, risks and interdependencies of the clinical, process development and manufacturing activities. The budgets needed for process development and manufacturing at each phase of development to ensure a market success each year were estimated. The impact of different clinical success rate profiles on the process development and manufacturing costs at each stage was investigated, with a particular focus on monoclonal antibodies. To ensure a market success each year with an overall clinical success rate (Phase I to approval) of ~12%, the model predicted that a biopharmaceutical company needs to allocate process development and manufacturing budgets in the order of ~$60 M for pre-clinical to Phase II material preparation and ~$70 M for Phase III to regulatory review material preparation. For lower overall clinical success rates of ~4%, which are more indicative of diseases such as Alzheimer's, these values increase to ~$190 M for early-phase and ~$140 Mfor late-phase material preparation; hence, the costs increase 2.5 fold. The costs for process development and manufacturing per market success were predicted to represent 13-17% of the R&D budget from pre-clinical trials to approval. The results of this quantitative structured cost study can be used to aid decision-making during portfolio management and budget planning procedures in biopharmaceutical development.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Benchmarking/métodos , Produtos Biológicos/uso terapêutico , Aprovação de Drogas/métodos , Desenvolvimento de Medicamentos/métodos , Indústria Farmacêutica/métodos , Benchmarking/economia , Ensaios Clínicos como Assunto/economia , Aprovação de Drogas/economia , Custos de Medicamentos/estatística & dados numéricos , Desenvolvimento de Medicamentos/economia , Avaliação Pré-Clínica de Medicamentos/economia , Indústria Farmacêutica/economia , Humanos , Modelos Econômicos , Preparações Farmacêuticas/economia , Pesquisa/economia , Pesquisa/estatística & dados numéricos , Tecnologia Farmacêutica/economia , Tecnologia Farmacêutica/métodos
7.
Cancer Gene Ther ; 27(10-11): 799-809, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932694

RESUMO

Chimeric antigen receptor (CAR) T cells are considered a potentially disruptive cancer therapy, showing highly promising results. Their recent success and regulatory approval (both in the USA and Europe) are likely to generate a rapidly increasing demand and a need for the design of robust and scalable manufacturing and distribution models that will ensure timely and cost-effective delivery of the therapy to the patient. However, there are challenging tasks as these therapies are accompanied by a series of constraints and particularities that need to be taken into consideration in the decision-making process. Here, we present an overview of the current state of the art in the CAR T cell market and present novel concepts that can debottleneck key elements of the current supply chain model and, we believe, help this technology achieve its long-term potential.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/metabolismo , Humanos
8.
Environ Sci Technol ; 53(16): 9418-9428, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31318536

RESUMO

Wildland fires in the western United States are projected to increase in frequency, duration, and size. Characterized by widespread and diverse conifer forests, burning within this region may lead to significant terpenoid emissions. Terpenoids constitute a major class of highly reactive secondary organic aerosol (SOA) precursors, with significant structure-dependent variability in reactivity and SOA-formation potential. In this study, highly speciated measurements of terpenoids emitted from laboratory and prescribed fires were achieved using two-dimensional gas chromatography. Nearly 100 terpenoids were measured in smoke samples from 71 fires, with high variability in the dominant compounds. Terpenoid emissions were dependent on plant species and tissues. Canopy/needle-derived emissions dominated in the laboratory fires, whereas woody-tissue-derived emissions dominated in the prescribed fires. Such differences likely have implications for terpenoid emissions from high vs low intensity fires and suggest that canopy-dominant laboratory fires may not accurately represent terpenoid emissions from prescribed fires or wildland fires that burn with low intensity. Predicted SOA formation was sensitive to the diversity of emitted terpenoids when compared to assuming a single terpene surrogate. Given the demonstrated linkages between fuel type, fire terpenoid emissions, and the subsequent implications for plume chemistry, speciated measurements of terpenoids in smoke derived from diverse ecosystems and fire regimes may improve air quality predictions downwind of wildland fires.


Assuntos
Poluentes Atmosféricos , Incêndios , Traqueófitas , Incêndios Florestais , Ecossistema , Florestas , Terpenos
9.
J Chromatogr A ; 1596: 104-116, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30885400

RESUMO

Chromatography remains the workhorse in antibody purification; however process development and characterisation still require significant resources. The high number of operating parameters involved requires extensive experimentation, traditionally performed at small- and pilot-scale, leading to demands in terms of materials and time that can be a challenge. The main objective of this research was the establishment of a novel High Throughput Process Development (HTPD) workflow combining scale-down chromatography experimentation with advanced decision-support techniques in order to minimise the consumption of resources and accelerate the development timeframe. Additionally, the HTPD workflow provides a framework to rapidly manipulate large datasets in an automated fashion. The central component of the HTPD workflow is the systematic integration of a microscale chromatography experimentation strategy with an advanced chromatogram evaluation method, design of experiments (DoE) and multivariate data analysis. The outputs of this are leveraged into the screening and optimisation components of the workflow. For the screening component, a decision-support tool was developed combining different multi-criteria decision-making techniques to enable a fair comparison of a number of CEX resin candidates and determine those that demonstrate superior purification performance. This provided a rational methodology for screening chromatography resins and process parameters. For the optimisation component, the workflow leverages insights provided through screening experimentation to guide subsequent DoE experiments so as to tune significant process parameters for the selected resin. The resulting empirical correlations are linked to a stochastic modelling technique so as to predict the optimal and most robust chromatographic process parameters to achieve the desired performance criteria.


Assuntos
Anticorpos/isolamento & purificação , Técnicas de Química Analítica/métodos , Cromatografia , Tomada de Decisões , Análise Multivariada , Projetos de Pesquisa , Software , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...