Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687424

RESUMO

Zirconium phosphate (ZrP), especially its alpha allotropic modification, appears to be a very promising sorbent material for the sorption and separation of various radionuclides due to its properties such as an extremely high ion exchange capacity and good radiation stability. Actinium-225 and its daughter nuclide 213Bi are alpha emitting radioisotopes of high interest for application in targeted alpha therapy of cancer. Thus, the main aim of this paper is to study the sorption of 225Ac on the α-ZrP surface and its kinetics, while the kinetics of the sorption is studied using natEu as a non-radioactive homologue of 225Ac. The sorption properties of α-ZrP were tested in an acidic environment (hydrochloric and nitric acid) using batch sorption experiments and characterized using equilibrium weight distribution coefficients Dw (mL/g). The modeling of the experimental data shows that the kinetics of 225Ac sorption on the surface of α-ZrP can be described using a film diffusion model (FD). The equilibrium weight distribution coefficient Dw for 225Ac in both hydrochloric and nitric acid reached the highest values in the concentration range 5.0-7.5 mM (14,303 ± 153 and 65,272 ± 612 mL/g, respectively). Considering the results obtained in radioactive static sorption experiments with 225Ac and in non-radioactive kinetic experiments with natEu, α-ZrP seems to be a very promising material for further construction of a 225Ac/213Bi generator.

2.
Materials (Basel) ; 16(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36902874

RESUMO

The overall need for the preparation of new medicinal radionuclides has led to the fast development of new sorption materials, extraction agents, and separation methods. Inorganic ion exchangers, mainly hydrous oxides, are the most widely used materials for the separation of medicinal radionuclides. One of the materials that has been studied for a long time is cerium dioxide, a competitive sorption material for the broadly used titanium dioxide. In this study, cerium dioxide was prepared through calcination of ceric nitrate and fully characterized using X-ray powder diffraction (XRPD), infrared spectrometry (FT-IR), scanning and transmission electron microscopy (SEM and TEM), thermogravimetric and differential thermal analysis (TG and DTA), dynamic light scattering (DLS), and analysis of surface area. In order to estimate the sorption mechanism and capacity of the prepared material, characterization of surface functional groups was carried out using acid-base titration and mathematical modeling. Subsequently, the sorption capacity of the prepared material for germanium was measured. It can be stated that the prepared material is prone to exchange anionic species in a wider range of pH than titanium dioxide. This characteristic makes the material superior as a matrix in 68Ge/68Ga radionuclide generators, and its suitability should be further studied in batch, kinetic, and column experiments.

3.
Materials (Basel) ; 14(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498548

RESUMO

The work deals with the evaluation of biochar samples prepared from Phyllostachys Viridiglaucescens bamboo. This evaluation consists of the characterization of prepared materials' structural properties, batch and dynamic sorption experiments, and potentiometric titrations. The batch technique was focused on obtaining basic sorption data of 88ᵐTcO4⁻ on biochar samples including influence of pH, contact time, and Freundlich isotherm. ReO4 -, which has very similar chemical properties to 88ᵐTcO4⁻, was used as a carrier in the experiments. Theoretical modeling of titration curves of biochar samples was based on the application of surface complexation models, namely, so called Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM). In this case it is assumed that there are two types of surface groups, namely, the so-called layer and edge sites. The dynamic experimental data of sorption curves were fitted by a model based on complementary error function erfc(x).

4.
Materials (Basel) ; 13(14)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664656

RESUMO

The study summarizes the results of monitoring the properties of two types of sorbents, BC1 (biochar sample 1) and BC2a (biochar sample 2), prepared by pyrolysis of bamboo biomass (BC1) and as its composite with montmorillonite K10 (BC2a). The main goal was to study their applicability to the Tc (VII) separation from liquid wastes, using NH4ReO4 as a carrier. The research was focused on determining the sorbents surface properties (by XRF (X-ray fluorescence) method and potentiometric titration in order to determine the properties of surface groups-Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM) models were applied here). As well as monitoring Tc (VII) (+Re(VII)) sorption, especially to determine equilibrium isotherm, the influence of pH and kinetics. The subject of research was also the dynamics of sorption, including its mathematical-physical modeling. Both sorbents have good properties against Tc (VII), however BC2a, due to the presence of montmorillonite, is more advantageous in this respect. It has a higher sorption capacity and faster kinetic investigation. An important finding is that the optimal pH is 2-3, which is related not only to the protonation of surface groups (they have a positive charge), but also to the negative form of the existence of Tc (VII) and Re (VII): TcO4- and ReO4-.

5.
Materials (Basel) ; 13(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325792

RESUMO

Sorption kinetics of radium on hydroxyapatite and titanium dioxide nanomaterials were studied. The main aim of the current study was to determine the rate-controlling process and the corresponding kinetic model, due to the application of studied nanomaterials as α-emitters' carriers, and to assess the sorption properties of both materials from the radiopharmaceutical point of view by time regulated sorption experiments on the nanoparticles. Radium-223 was investigated as radionuclide used in targeted alpha particle therapy as an in vivo generator. It was found that the controlling process of the 223Ra sorption kinetics was the diffusion in a reacted layer. Therefore, parameters like particle size, their specific surface area, contact time and temperature played important role. Moreover, the composition of liquid phase, such as pH, the concentration of 223Ra, ionic strength, the presence of complexation ligands, etc., had to be considered. Experiments were conducted under free air conditions and at pH 8 for hydroxyapatite and pH 6 for titanium dioxide in Britton-Robinson buffer. Initial 223Ra concentration was in the range from 10-11 to 10-12 mol/L. It was found that sorption kinetics was very fast (more than 90% in the first hour) in the case of both nanomaterials, so they can be directly used for efficient radium sorption.

6.
RSC Adv ; 10(7): 3659-3666, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35492660

RESUMO

The mechanism of 223Ra uptake on hydroxyapatite and titanium dioxide nanoparticles was studied as a function of pH. Both materials are widely used in food industry and medicine. They offer properties suitable for labelling with medicinal radionuclides, particularly for targeted radionuclide therapy. The selected isotope, 223Ra, is an alpha emitter widely used in targeted alpha particle therapy due to high-dose delivery in very small tissue volume, nevertheless the results are applicable for any radium isotope including 226Ra. The study was performed in the pH range 4.5 to 12 for hydroxyapatite nanoparticles and 2 to 12 for titanium dioxide nanoparticles in Britton-Robinson buffer solution. Both nanomaterials at pH 6 and higher showed that over 95% of the radium has been sorbed. According to the applied chemical equilibrium model, the most important species playing a role in sorption on the edge-sites were RaCO3, RaPO4 -, RaHPO4 and Ra(Ac-)2, and Ra2+ and RaH2PO4 + on layer-sites. All experiments were conducted under free air conditions and no negative impact of CO2 was found. The surface complexation model was found suitable for describing radium uptake by the studied hydroxyapatite and titanium dioxide nanomaterials.

7.
RSC Adv ; 9(38): 21989-21995, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35518862

RESUMO

We provide characterization data of hydroxyapatite (nHAp) and titanium dioxide (nTiO2) nanoparticles as potential materials for ion sorption, e.g. in targeted therapy, barrier materials for waste repositories or photovoltaics. The study is focused on the determination of the values of protonation and ion exchange constants and site densities (∑SOH, ∑X; [mol kg-1]) of nTiO2 and nHAp for further Ra kinetics and sorption experiments. These data are very important for further investigation of the materials, which can be used e.g. as drug delivery systems or in engineered barriers of deep geological repositories. The characterization was based on the evaluation of the dependence of titrating agent consumption on pH. Titration results were evaluated on the basis of several model combinations, however the combination of the Chemical Equilibrium Model (CEM) and Ion Exchange Model (IExM) fits best to the experimental titration curves. However, the differences between the two sorbents were relatively large. Due to stability in a broad pH range and available surface sites, nTiO2 seems to have a wide application range. The applicability of nHAp is not so wide because of its dissolution under pH 5. Both sorbents are virtually able to sorb cationic species on deprotonated edge and layer sites with different capacities, which can be important for sorption and decontaminating applications.

8.
Inorg Chem ; 52(9): 4993-5005, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23614770

RESUMO

Two members of the tetradentate N-donor ligand families 6,6'-bis(1,2,4-triazin-3-yl)-2,2'-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO-LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO-LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol(-1)) energy barrier to rotation about the central biaryl C-C axis in order to achieve the cis-cis conformation that is required to form a complex, whereas the cis-cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10-coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.

9.
J Environ Radioact ; 108: 41-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21940076

RESUMO

Kinetics of Pu(IV) and Am(III) sorption from natural groundwater to three types of clays were studied at trace concentrations of the elements. Higher K(d) values were determined for sorption of Pu than of Am, and no clear dependence of the K(d) values and the kinetic coefficients on the composition of the clays can be deduced. Kinetic data evaluated by models for six different control processes indicated a sorption mechanism controlled by Pu or Am diffusion in the inert layer on the surface of the clays. Apart from the kinetics of the elements sorption, time-dependent changes in their bonding nature were also studied using a sequential extraction. It was found that Pu(IV) was predominantly associated with amorphous and crystalline Fe oxides as well as natural organic matter sites on the clays, whereas in the case of Am(III) the exchangeable and carbonate sites played the principal role.


Assuntos
Silicatos de Alumínio/química , Amerício/química , Plutônio/química , Poluentes Radioativos da Água/química , Adsorção , Argila , Água Subterrânea/química , Compostos de Ferro/química , Cinética , Espectroscopia de Ressonância Magnética , Óxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA