Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Microb Ecol ; 86(2): 859-871, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36322177

RESUMO

In the last several decades, amphibian populations have been declining worldwide. Many factors have been linked to global amphibian decline, including habitat destruction, pollution, introduced species, global environmental changes, and emerging infectious diseases. Recent studies of amphibian skin infections were mainly focused on the presence of chytridiomycosis, neglecting other members of the frogs' skin communities. The diversity pattern of fungal dwellers on the skin of green frogs (Pelophylax esculentus complex) was investigated. A total of 100 adults were sampled from three localities in South Banat (northern Serbia) over three consecutive years and detected fungal dwellers were identified using light microscopy and ITS and BenA gene sequencing. Structures belonging to fungi and fungus-like organisms including a variety of spores and different mycelia types were documented in the biofilm formed on amphibian skin, and are classified into 10 groups. In total, 42 fungal isolates were identified to species, section, or genus level. The difference in mycobiota composition between sampling points (localities and green frog taxa) was documented. The highest number of fungal structures and isolates was recorded on the hybrid taxon P. esculentus and locality Stevanove ravnice. Parental species showed a markedly lower diversity than the hybrid taxon and were more similar in diversity patterns and were placed in the same homogenous group. The locality Stevanove ravnice exhibited more pronounced differences in diversity pattern than the other two localities and was placed in a distinct and separate homogenous group. Among the fungal isolates, the highest isolation frequency was documented for Alternaria alternata, Aspergillus sp. sect. Nigri, Epicoccum nigrum, Fusarium proliferatum, and Trichoderma atroviride. Among the documented species, dematiaceous fungi, causative agents of chromomycosis in amphibians, were also recorded in this research with high isolation frequency. Also, some rare fungal species such as Quambalaria cyanescens and Pseudoteniolina globosa are documented for the first time in this research as microbial inhabitants of amphibian skin.


Assuntos
Rana clamitans , Animais , Rana esculenta , Ranidae/microbiologia , Anuros , Pele/microbiologia
2.
Front Zool ; 15: 37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275869

RESUMO

BACKGROUND: As a small artiodactyl, the roe deer (Capreolus capreolus L.) is characterized by biological plasticity and great adaptability demonstrated by their survival under a wide variety of environmental conditions. In order to depict patterns of phenotypic variation of roe deer body this study aims to quantify variation during ontogenetic development and determine how sex-specific reproductive investment and non-uniform habitat differences relate to phenotypic variation and do these differential investments mold the patterns of phenotypic variation through modular organisation. RESULTS: Patterns of phenotypic correlation among body traits change during the ontogeny of roe deer, with differential influence of sex and habitat type. Modularity was found to be a feature of closed habitats with trunk+forelimbs+hindlimbs as the best supported integration/modularity hypothesis for both sexes. The indices of integration and evolvability vary with habitat type, age and sex where increased integration is followed by decreased evolvability. CONCLUSION: This is the first study that quantifies patterns of correlation in the roe deer body and finds pronounced changes in correlation structure during ontogeny affected by sex and habitat type. The correlation structure of the roe deer body is developmentally written over the course of ontogeny but we do not exclude the influence of function on ontogenetic changes. Modularity arises with the onset of reproduction (subadults not being modular) and is differentially expressed in males and females from different habitats. Both adult males and females show modularity in primordial, closed habitats. Overall, all these findings are important as they provide support to the idea that modularity can evolve at the population level and change fast within a species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...