Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biochim Biophys Acta Gen Subj ; 1865(12): 130013, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534644

RESUMO

BACKGROUND: Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients. METHODS: To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry. RESULTS: Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The ß-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the ß-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the ß-chain. CONCLUSIONS: We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation. GENERAL SIGNIFICANCE: We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients .


Assuntos
Acroleína , Aldeídos , Peroxidação de Lipídeos
3.
Curr Opin Chem Biol ; 59: 111-118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32726707

RESUMO

Sulfoxide synthases are non-heme iron enzymes that catalyze oxidative carbonsulfur bond formation in the biosynthesis of thiohistidines such as ergothioneine and ovothiol. The catalytic mechanism of these enzymes has been studied by protein crystallography, steady-state kinetics, non-natural amino acid incorporation and computational modeling. This review discusses the current status of this research and also highlights similarities between the CS bond forming activity of sulfoxide synthases with that of synthetic coordination compounds.


Assuntos
Vias Biossintéticas , Ergotioneína/metabolismo , Ligases/metabolismo , Metilistidinas/metabolismo , Sulfóxidos/metabolismo , Animais , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/enzimologia , Fungos/metabolismo , Humanos , Modelos Moleculares
4.
Curr Opin Struct Biol ; 65: 1-8, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408082

RESUMO

Ergothioneine is a sulfur-containing histidine derivative synthesized by many bacteria and most fungi but it also finds its way into human tissue by way of specific absorption from the diet. The precise role of ergothioneine is not yet known but there is growing evidence that it plays a role as an antioxidant protecting human cells from oxidative stress and pathogenic bacteria from host defenses. In this review we highlight recent advances in understanding the structural basis of ergothioneine biosynthesis. In addition to unusual carbon-sulfur bond forming enzymology this research has revealed that ergothioneine biosynthesis has emerged at least three times by independent molecular evolution.


Assuntos
Enzimas/química , Ergotioneína/biossíntese , Histidina/metabolismo , Humanos
5.
Chemistry ; 26(6): 1328-1334, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31545545

RESUMO

Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon-sulfur (C-S) and sulfur-oxygen (S-O) bond formation as well as carbon-hydrogen (C-H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C-S and C-Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.


Assuntos
Acidobacteria/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Fúngicas/antagonistas & inibidores , Selenocisteína/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ligação Competitiva , Biocatálise , Domínio Catalítico , Cisteína Dioxigenase/antagonistas & inibidores , Cisteína Dioxigenase/metabolismo , Ergotioneína/química , Ergotioneína/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mycobacteriaceae/enzimologia , Selenocisteína/metabolismo
6.
J Am Chem Soc ; 141(13): 5275-5285, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883103

RESUMO

Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon-sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.


Assuntos
Acidobacteria/enzimologia , Ergotioneína/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxigênio/metabolismo , Sítios de Ligação , Biocatálise , Ergotioneína/química , Estrutura Molecular , Oxirredução , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...