Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(49): 55238-55248, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36455132

RESUMO

Since its discovery, atomic force microscopy (AFM) has become widely used for surface characterization, evolving from a tool for probing surface topography to a versatile method for characterizing mechanical, electrical, chemical, magnetic, and electro-optical properties of surfaces at the nanoscale. Developments of several AFM-based techniques have enabled even subsurface imaging, which is routinely being carried out at the qualitative level of feature detection for localized subsurface inhomogeneities. We surmise, however, that a quantitative three-dimensional (3D) subsurface characterization can emerge from the AFM mechanical response of flat buried interfaces, and present here a methodology for determining the depth of a film and its mechanical properties. Using load-dependent contact resonance atomic force microscopy (CR-AFM) and accurate modeling of the contact between the AFM tip and a layered sample, we determine the relationship between the measured resonance frequency of the AFM probe and the contact stiffness. Our subsequent statistical analysis reveals an intrinsic and sample-specific interdependence between the depth and modulus sensitivities of CR-AFM. This interdependence prevents the simultaneous accurate determination of both depth and modulus from measurements on a single-layered sample. If the elastic moduli of the sample components are predetermined from separate investigations of bulk samples (or otherwise known), then this methodology accurately yields the location of the interface between the layers of the sample; as such, it can serve as a nondestructive and robust technique for probing layer thickness, subsurface features, and elastic properties of materials used in semiconductor electronics, additive manufacturing, or biomaterials.

2.
Beilstein J Nanotechnol ; 12: 1115-1126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703722

RESUMO

The open-loop (OL) variant of Kelvin probe force microscopy (KPFM) provides access to the voltage response of the electrostatic interaction between a conductive atomic force microscopy (AFM) probe and the investigated sample. The measured response can be analyzed a posteriori, modeled, and interpreted to include various contributions from the probe geometry and imaged features of the sample. In contrast to this, the currently implemented closed-loop (CL) variants of KPFM, either amplitude-modulation (AM) or frequency-modulation (FM), solely report on their final product in terms of the tip-sample contact potential difference. In ambient atmosphere, both CL AM-KPFM and CL FM-KPFM work at their best during the lift part of a two-pass scanning mode to avoid the direct contact with the surface of the sample. In this work, a new OL AM-KPFM mode was implemented in the single-pass scan of the PeakForce Tapping (PFT) mode. The topographical and electrical components were combined in a single pass by applying the electrical modulation only in between the PFT tip-sample contacts, when the AFM probe separates from the sample. In this way, any contact and tunneling discharges are avoided and, yet, the location of the measured electrical tip-sample interaction is directly affixed to the topography rendered by the mechanical PFT modulation at each tap. Furthermore, because the detailed response of the cantilever to the bias stimulation was recorded, it was possible to analyze and separate an average contribution of the cantilever to the determined local contact potential difference between the AFM probe and the imaged sample. The removal of this unwanted contribution greatly improved the accuracy of the AM-KPFM measurements to the level of the FM-KPFM counterpart.

3.
Nanotechnology ; 31(38): 385706, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516761

RESUMO

A more inclusive and detailed measurement of various physical interactions is enabled by the advance of high-speed data digitization. For surface potential characterization, this was demonstrated recently in terms of open-loop amplitude modulation Kelvin probe force microscopy (OL AM-KPFM). Its counterpart, namely open-loop frequency modulation Kelvin probe force microscopy (OL FM-KPFM), is examined here across different materials and under various bias voltages in the form of OL sideband FM-KPFM. In this implementation the changes in the amplitude and resonance frequency of the cantilever were continuously tracked as a conductive AFM probe was modulated by a 2 kHz AC bias voltage around the first eigenmode frequency of the cantilever. The contact potential difference (CPD) between the AFM probe and sample was determined from the time series analysis of the high-speed 4 MHz digitized amplitude and frequency signals of the OL sideband FM-KPFM mode. This interpretation is demonstrated to be superior to the analysis of the parabolic bias dependent response, which is more commonly used to extract the CPD in OL KPFM modes. The measured OL sideband FM-KPFM amplitude and frequency responses are directly related to the electrostatic force and force-gradient between the AFM probe and sample, respectively. As a result, clear distinction was observed for the determined CPD in each of these cases across materials of different surface potentials, with far superior spatial resolution when the force-gradient detection was used. In addition, the CPD values obtained from OL sideband FM-KPFM amplitude and frequency measurements perfectly matched those determined from their closed-loop AM-KPFM and FM-KPFM counterparts, respectively.

4.
ACS Appl Mater Interfaces ; 12(15): 18182-18193, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32192325

RESUMO

Doping is a key process by which the concentration and type of majority carriers can be tuned to achieve desired conduction properties. The common way of doping is via bulk impurities, as in the case of silicon. For van der Waals bonded semiconductors, control over bulk impurities is not as well developed, because they may either migrate between the layers or bond with the surfaces or interfaces becoming undesired scattering centers for carriers. Herein, we investigate by means of Kelvin probe force microscopy (KPFM) and density functional theory calculations (DFT) the doping of MoTe2 via surface charge transfer occurring in air. Using DFT, we show that oxygen molecules physisorb on the surface and increase its work function (compared to pristine surfaces) toward p-type behavior, which is consistent with our KPFM measurements. The surface charge transfer doping (SCTD) driven by adsorbed oxygen molecules can be easily controlled or reversed through thermal annealing of the entire sample. Furthermore, we also demonstrate local control of the doping by contact electrification. As a reversible and controllable nanoscale physisorption process, SCTD can thus open new avenues for the emerging field of 2D electronics.

5.
Parasit Vectors ; 12(1): 370, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349861

RESUMO

BACKGROUND: Thelazia callipaeda (Spirurida, Thelaziidae) is a vector-borne zoonotic eye worm with a broad host spectrum. In Europe, it is an emerging threat, having greatly expanded its geographical distribution during the past two decades. In Romania, T. callipaeda has been previously reported in domestic and wild canids and felids. The aim of the present study was to assess the occurrence of T. callipaeda in mustelids in the country. METHODS: Between March 2015 and April 2019, 77 road-killed mustelids (3 pine martens, Martes martes; 6 European polecats, Mustela putorius; 13 beech martens, Martes foina; and 55 European badgers, Meles meles) were examined by necropsy. If present, all ocular nematodes were collected and stored in absolute ethanol, for subsequent morphological and molecular identification. RESULTS: Two animals were found to be infected with T. callipaeda: one European badger and one beech marten. The molecular analysis revealed a 100% nucleotide similarity to T. callipaeda haplotype h1 for all the sequenced specimens. CONCLUSIONS: To our knowledge, the present study demonstrates for the first time the occurrence of T. callipaeda in mustelids from Romania, records the easternmost locality of the parasite in Europe, and represents the first report of T. callipaeda in the European badger, Meles meles, extending the known host range for this parasite in Europe.


Assuntos
Olho/parasitologia , Especificidade de Hospedeiro , Mustelidae/parasitologia , Infecções por Spirurida/veterinária , Thelazioidea/isolamento & purificação , Animais , Feminino , Haplótipos , Masculino , Romênia/epidemiologia , Análise de Sequência de DNA , Infecções por Spirurida/epidemiologia , Thelazioidea/genética , Thelazioidea/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-33642611

RESUMO

In this work, the effect of the edge compliance on the adhesive, frictionless contacts near the edge of a quarter-space is analyzed in terms of stress, deformation, and contact stiffness. The study relies on the numerical implementation of the conjugate gradient method (CGM) to adhesive contacts near the edge of a quarter-space. It extends the previous CGM developed for contact analysis of non-adhesive and adhesive contacts on half-space to the matrix formulation of the quarter-space problem. The considered adhesive contact interaction is in terms of the Maugis-Dugdale model to provide insight into the transitional behavior from non-adhesive to various type of contact adhesive regimes. It is found that the edge compliance affects the contact mechanics of adhesive contacts as a function of position, applied force, and adhesive parameter. The analysis provides calculations for quantities like depth indentation and contact stiffness that can be found directly in indentation-type experiments performed on samples with edge geometries. Such understanding and characterization of edge contacts can be used to unambiguously account for the mechanical response of nanoscale structures near their edges and detect possible mechanical variability introduced by fabrication and processing.

7.
Adv Mater ; 30(51): e1805004, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368943

RESUMO

Manipulating a crystalline material's configurational entropy through the introduction of unique atomic species can produce novel materials with desirable mechanical and electrical properties. From a thermal transport perspective, large differences between elemental properties such as mass and interatomic force can reduce the rate at which phonons carry heat and thus reduce the thermal conductivity. Recent advances in materials synthesis are enabling the fabrication of entropy-stabilized ceramics, opening the door for understanding the implications of extreme disorder on thermal transport. Measuring the structural, mechanical, and thermal properties of single-crystal entropy-stabilized oxides, it is shown that local ionic charge disorder can effectively reduce thermal conductivity without compromising mechanical stiffness. These materials demonstrate similar thermal conductivities to their amorphous counterparts, in agreement with the theoretical minimum limit, resulting in this class of material possessing the highest ratio of elastic modulus to thermal conductivity of any isotropic crystal.

8.
Soft Matter ; 14(8): 1311-1318, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29340414

RESUMO

Nanoparticles typically have an inherent wide size distribution that may affect the performance and reliability of many nanomaterials. Because the synthesis and purification of nanoparticles with desirable sizes are crucial to the applications of nanoparticles in various fields including medicine, biology, health care, and energy, there is a great need to search for more efficient and generic methods for size-selective nanoparticle purification/separation. Here we propose and conclusively demonstrate the effectiveness of a size-selective particle purification/separation method based on the critical Casimir force. The critical Casimir force is a generic interaction between colloidal particles near the solvent critical point and has been extensively studied in the past several decades due to its importance in reversibly controlling the aggregation and stability of colloidal particles. Combining multiple experimental techniques, we found that the critical Casimir force-induced aggregation depends on relative particle sizes in a system with larger ones aggregating first and the smaller ones remaining in solution. Based on this observation, a new size-dependent nanoparticle purification/separation method is proposed and demonstrated to be very efficient in purifying commercial silica nanoparticles in the lutidine/water binary solvent. Due to the ubiquity of the critical Casimir force for many colloidal particles in binary solvents, this method might be applicable to many types of colloidal particles.

9.
Exp Mech ; 58(7)2018.
Artigo em Inglês | MEDLINE | ID: mdl-35529526

RESUMO

In the last two decades, significant progress has been made on developing new nanoscale mechanical property measurement techniques including instrumented indentation and atomic force microscopy based techniques. The changes in the tip-sample contact mechanics during measurements uniquely modify the displacement and force sensed by a measurement sensor and much effort is dedicated to correctly retrieve the sample mechanical properties from the measured signal. It turns out that in many cases, for the sake of simplicity, a simple contact mechanics model is adopted by overlooking the complexity of the actual contact geometry. In this work, a newly developed matrix formulation is used to solve the stress and strain equations for samples with edge geometries. Such sample geometries are often encountered in today's nanoscale integrated electronics in the form of high-aspect-ratio fins with widths in the range of tens of nanometers. In the matrix formulation, the fin geometries can be easily modeled as adjacent overlapped half-spaces and the contact problem can be solved by a numerical implementation of the conjugate gradient method. This method is very versatile in terms of contact geometry and contact interaction, either non-adhesive or adhesive. The discussion will incorporate a few model examples that are relevant for the nanoscale mechanics investigated by intermittent contact resonance AFM (ICR-AFM) on low-k dielectric fins of high-aspect-ratio. In such ICR-AFM measurements, distinct dependence of the contact stiffness was observed as a function of the applied force and distance from the edges of the fins. These dependences were correctly predicted by the model and used to retrieve the mechanical changes undergone by fins during fabrication and processing.

10.
PLoS One ; 12(12): e0189273, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261701

RESUMO

Olfactory responses are intensely enhanced with the addition of endogenous and engineered primarily-elemental small zinc nanoparticles (NPs). With aging, oxidation of these Zn nanoparticles eliminated the observed enhancement. The design of a polyethylene glycol coating to meet storage requirements of engineered zinc nanoparticles is evaluated to achieve maximal olfactory benefit. The zinc nanoparticles were covered with 1000 g/mol or 400 g/mol molecular weight polyethylene glycol (PEG). Non-PEGylated and PEGylated zinc nanoparticles were tested by electroolfactogram with isolated rat olfactory epithelium and odorant responses evoked by the mixture of eugenol, ethyl butyrate and (±) carvone after storage at 278 K (5 oC), 303 K (30 oC) and 323 K (50 oC). The particles were analyzed by atomic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and laser Doppler velocimetry. Our data indicate that stored ZnPEG400 nanoparticles maintain physiologically-consistent olfactory enhancement for over 300 days. These engineered Nanoparticles support future applications in olfactory research, sensitive detection, and medicine.


Assuntos
Nanopartículas Metálicas/química , Odorantes , Mucosa Olfatória/efeitos dos fármacos , Polietilenoglicóis/química , Zinco/química , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica
11.
Beilstein J Nanotechnol ; 8: 863-871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503397

RESUMO

The exploitation of nanoscale size effects to create new nanostructured materials necessitates the development of an understanding of relationships between molecular structure, physical properties and material processing at the nanoscale. Numerous metrologies capable of thermal, mechanical, and electrical characterization at the nanoscale have been demonstrated over the past two decades. However, the ability to perform nanoscale molecular/chemical structure characterization has only been recently demonstrated with the advent of atomic-force-microscopy-based infrared spectroscopy (AFM-IR) and related techniques. Therefore, we have combined measurements of chemical structures with AFM-IR and of mechanical properties with contact resonance AFM (CR-AFM) to investigate the fabrication of 20-500 nm wide fin structures in a nanoporous organosilicate material. We show that by combining these two techniques, one can clearly observe variations of chemical structure and mechanical properties that correlate with the fabrication process and the feature size of the organosilicate fins. Specifically, we have observed an inverse correlation between the concentration of terminal organic groups and the stiffness of nanopatterned organosilicate fins. The selective removal of the organic component during etching results in a stiffness increase and reinsertion via chemical silylation results in a stiffness decrease. Examination of this effect as a function of fin width indicates that the loss of terminal organic groups and stiffness increase occur primarily at the exposed surfaces of the fins over a length scale of 10-20 nm. While the observed structure-property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential.

12.
Nanotechnology ; 27(48): 485706, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804920

RESUMO

In this work, intermittent contact resonance atomic force microscopy (ICR-AFM) was performed on high-aspect ratio a-SiOC:H patterned fins (100 nm in height and width from 20 to 90 nm) to map the depth and width dependencies of the material stiffness. The spatial resolution and depth sensitivity of the measurements were assessed from tomographic cross-sections over various regions of interest within the 3D space of the measurements. Furthermore, the depth-dependence of the measured contact stiffness over the scanned area was used to determine the sub-surface variation of the elastic modulus at each point in the scan. This was achieved by iteratively adjusting the local elastic profile until the depth dependence of the resulted contact stiffness matched the depth dependence of the contact stiffness measured by ICR-AFM at that location. The results of this analysis were assembled into nanoscale sub-surface tomographic images of the elastic modulus of the investigated SiOC:H patterns. A new 3D structure-property representation emerged from these tomographic images with direct evidence for the alterations sustained by the structures during processing.

13.
Biometals ; 29(6): 1005-1018, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27649965

RESUMO

Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.


Assuntos
Nanopartículas Metálicas/química , Odorantes , Neurônios Receptores Olfatórios/efeitos dos fármacos , Zinco/química , Zinco/farmacologia , Animais , Eletrofisiologia/métodos , Masculino , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Neurônios Receptores Olfatórios/fisiologia , Espectroscopia Fotoeletrônica , Ratos Sprague-Dawley , Receptores Odorantes/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia
14.
Int J Solids Struct ; 87: 1-10, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27574338

RESUMO

In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces.

15.
Appl Surf Sci ; 378: 301-307, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397949

RESUMO

Low temperature Si epitaxy has become increasingly important due to its critical role in the encapsulation and performance of buried nanoscale dopant devices. We demonstrate epitaxial growth up to nominally 25 nm, at 250°C, with analysis at successive growth steps using STM and cross section TEM to reveal the nature and quality of the epitaxial growth. STM images indicate that growth morphology of both Si on Si and Si on H-terminated Si (H: Si) is epitaxial in nature at temperatures as low as 250 °C. For Si on Si growth at 250 °C, we show that the Si epitaxial growth front maintains a constant morphology after reaching a specific thickness threshold. Although the in-plane mobility of silicon is affected on the H: Si surface due to the presence of H atoms during initial sub-monolayer growth, STM images reveal long range order and demonstrate that growth proceeds by epitaxial island growth albeit with noticeable surface roughening.

16.
Int J Nanomedicine ; 11: 1567-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27143879

RESUMO

BACKGROUND: Small metal nanoparticles obtained from animal blood were observed to be toxic to cultured cancer cells, whereas noncancerous cells were much less affected. In this work, engineered zinc and copper metal nanoparticles were produced from bulk metal rods by an underwater high-voltage discharge method. The metal nanoparticles were characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The metal nanoparticles, with estimated diameters of 1 nm-2 nm, were determined to be more than 85% nonoxidized. A cell viability assay and high-resolution light microscopy showed that exposure of RG2, cultured rat brain glioma cancer cells, to the zinc and copper nanoparticles resulted in cell morphological changes, including decreased cell adherence, shrinking/rounding, nuclear condensation, and budding from cell bodies. The metal-induced cell injuries were similar to the effects of staurosporine, an active apoptotic reagent. The viability experiments conducted for zinc and copper yielded values of dissociation constants of 0.22 ± 0.08 nmol/L (standard error [SE]) and 0.12 ± 0.02 nmol/L (SE), respectively. The noncancerous astrocytes were not affected at the same conditions. Because metal nanoparticles were lethal to the cancer cells at sub-nanomolar concentrations, they are potentially important as nanomedicine. PURPOSE: Lethal concentrations of synthetic metal nanoparticles reported in the literature are a few orders of magnitude higher than the natural, blood-isolated metal nanoparticles; therefore, in this work, engineered metal nanoparticles were examined to mimic the properties of endogenous metal nanoparticles. MATERIALS AND METHODS: RG2, rat brain glioma cells CTX TNA2 brain rat astrocytes, obtained from the American Type Culture Collection, high-voltage discharge, atomic force microscope, X-ray photoelectron spectroscopy, high-resolution light microscopy, zeta potential measurements, and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay were used in this work. RESULTS: Engineered zinc and copper metal nanoparticles of size 1 nm-2 nm were lethal to cultured RG2 glioma cancer cells. Cell death was confirmed by MTT assay, showing that the relative viability of RG2 glioma cells is reduced in a dose-dependent manner at sub-nanomolar concentrations of the nanoparticles. The noncancerous astrocytes were not affected at the same conditions. CONCLUSION: The engineered and characterized zinc and copper nanoparticles are potentially significant as biomedicine.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cobre/química , Glioma/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Nanomedicina , Zinco/química , Animais , Encéfalo/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Ratos , Células Tumorais Cultivadas
17.
Ultramicroscopy ; 163: 75-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26939030

RESUMO

The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10(-4) in strain. CRM was similarly precise, but was limited in accuracy to several times this value.

18.
ACS Nano ; 10(3): 3580-8, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26866442

RESUMO

When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 µm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 µm in diameter.

19.
Nano Lett ; 15(6): 3845-50, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25950850

RESUMO

Commonly known in macroscale mechanics, buckling phenomena are now also encountered in the nanoscale world as revealed in today's cutting-edge fabrication of microelectronics. The description of nanoscale buckling requires precise dimensional and elastic moduli measurements, as well as a thorough understanding of the relationships between stresses in the system and the ensuing morphologies. Here, we analyze quantitatively the buckling mechanics of organosilicate fins that are capped with hard masks in the process of lithographic formation of deep interconnects. We propose an analytical model that quantitatively describes the morphologies of the buckled fins generated by residual stresses in the hard mask. Using measurements of mechanical properties and geometric characteristics, we have verified the predictions of the analytical model for structures with various degrees of buckling, thus putting forth a framework for guiding the design of future nanoscale interconnect architectures.

20.
Nanotechnology ; 25(24): 245702, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24858092

RESUMO

The intermittent contact resonance atomic force microscopy (ICR-AFM) mode proposed here is a new frequency modulation technique performed in scanning force controlled AFM modes like force volume or peak force tapping. It consists of tracking the change in the resonance frequency of an eigenmode of a driven AFM cantilever during scanning as the AFM probe intermittently contacts a surface at a controlled applied maximum force (setpoint). A high speed data capture was used during individual oscillations to obtain detailed contact stiffness-force curve measurements on a two-phase polystyrene/poly(methyl methacrylate) film with sub-micrometer size domains. Through a suitable normalization, the measurements were analyzed by linear fits to provide an improved quantitative characterization of these materials in terms of their elastic moduli and adhesive properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...