Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 655406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936140

RESUMO

Heading time in barley is considered a key developmental stage controlling adaptation to the environment and it affects grain yield; with the combination of agronomy (planting dates) and genetics being some of the determinants of adaptation to environmental conditions in order to escape late frost, heat, and terminal drought stresses. The objectives of this study are (i) to apply a gene-based characterization of 118 barley doubled haploid recombinants for vernalization, photoperiod, and earliness per se; (ii) use such information to quantify the optimal combination of genotype/sowing date that escapes extreme weather events; and (iii) how water and nitrogen management impact on grain yield. The doubled haploid barley genotypes with different allelic combinations for vernalization, photoperiod, and earliness per se were grown in eight locations across the Mediterranean basin. This information was linked with the crop growth model parameters. The photoperiod and earliness per se alleles modify the length of the phenological cycle, and this is more evident in combination with the recessive allele of the vernalization gene VRN-H2. In hot environments such as Algeria, Syria, and Jordan, early sowing dates (October 30 and December15) would be chosen to minimize the risk of exposing barley to heat stress. To maintain higher yields in the Mediterranean basin, barley breeding activities should focus on allelic combinations that have recessive VRN-H2 and EPS2 genes, since the risk of cold stress is much lower than the one represented by heat stress.

2.
Plant Physiol ; 158(2): 777-89, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22167118

RESUMO

Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints.


Assuntos
Proteínas de Plantas/metabolismo , Triticum/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Western Blotting , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Fosforilação , Proteínas de Plantas/química , Ligação Proteica , Triticum/citologia
3.
Int J Food Sci Nutr ; 63(1): 23-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21707450

RESUMO

The aim of this research was to evaluate ß-glucan-enriched flours, obtained from barleys with either normal or waxy starch, for their effects on the glycaemic index (GI) and the quality of bread. Rheological results confirmed that when barley flour was included in the dough the overall quality of bread slightly worsened. However, positive consequences on glycaemia were obtained with the normal starch barley: the GI of all-wheat bread (82.8 ± 7.2) was significantly reduced (57.2 ± 7.9) when 40% of wheat flour was substituted with ß-glucan-enriched barley flour (6.0% ± 0.1 ß-glucan in the final flour blend). In contrast, this positive effect was significantly reduced (GI: 70.1 ± 9.1) when 40% of wheat flour was substituted with the ß-glucan-enriched flour of a waxy barley (CDC Alamo; 6.6 ± 0.2 ß-glucan in the final flour blend), suggesting that the ability of ß-glucans to lower the GI was affected by the barley starch-type.


Assuntos
Glicemia/metabolismo , Pão/análise , Farinha/análise , Alimentos Fortificados/análise , Índice Glicêmico/efeitos dos fármacos , Hordeum/química , beta-Glucanas/farmacologia , Pão/normas , Dieta , Grão Comestível/química , Humanos , Reologia , Amido/química , Triticum
4.
J Agric Food Chem ; 55(8): 3158-66, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17381125

RESUMO

An important determinative of malt quality is the malt beta-glucan content, which in turn depends on the initial barley beta-glucan content as well as the beta-glucan depolymerization by beta-glucanase (EC 3.2.1.73) during malting. Another enzyme, named beta-glucan solubilase, has been suggested to act prior to beta-glucanase; its existence, however, has not been unequivocally proven. We monitored changes in beta-glucan levels and in the development of beta-glucan-degrading enzymes during malting of five lots of contrasting barley genotypes. Two models of in vivo kinetics for beta-glucan degradation were then compared as follows: (i) a biphasic model based on the sequential action of beta-glucan solubilase and beta-glucanase and (ii) a monophasic model assuming that all beta-glucans are depolymerized by beta-glucanase without the previous intervention of another enzyme. Confirmatory regression analysis was used to test the fit of the models to the observed data. Our results show that beta-glucan degradation is mostly monophasic, although some enzyme other than beta-glucanase seems to be required for the early solubilization of a small fraction of insoluble beta-glucans (on average, 7% of total beta-glucans). Furthermore, the genotype-dependent kinetic rate constant (indicating beta-glucan degradability), in addition to beta-glucanase activity, is suggested to play a major role in malting quality.


Assuntos
Hordeum/enzimologia , Hordeum/genética , beta-Glucanas/metabolismo , Grão Comestível/metabolismo , Genótipo , Glicosídeo Hidrolases/metabolismo , Hordeum/química , Cinética , Modelos Biológicos , beta-Glucanas/análise
5.
Plant Mol Biol ; 63(5): 679-88, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17143578

RESUMO

Traditionally housekeeping genes have been employed as endogenous reference (internal control) genes for normalization in gene expression studies. Since the utilization of single housekeepers cannot assure an unbiased result, new normalization methods involving multiple housekeeping genes and normalizing using their mean expression have been recently proposed. Moreover, since a gold standard gene suitable for every experimental condition does not exist, it is also necessary to validate the expression stability of every putative control gene on the specific requirements of the planned experiment. As a consequence, finding a good set of reference genes is for sure a non-trivial problem requiring quite a lot of lab-based experimental testing. In this work we identified novel candidate barley reference genes suitable for normalization in gene expression studies. An advanced web search approach aimed to collect, from publicly available web resources, the most interesting information regarding the expression profiling of candidate housekeepers on a specific experimental basis has been set up and applied, as an example, on stress conditions. A complementary lab-based analysis has been carried out to verify the expression profile of the selected genes in different tissues and during heat shock response. This combined dry/wet approach can be applied to any species and physiological condition of interest and can be considered very helpful to identify putative reference genes to be shortlisted every time a new experimental design has to be set up.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/genética , Transcrição Gênica , Sequência de Bases , Primers do DNA , DNA Complementar/genética , Modelos Genéticos , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase
6.
Plant Physiol ; 141(1): 257-70, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16603669

RESUMO

Previously, we have shown that barley (Hordeum vulgare) plants carrying a mutation preventing chloroplast development are completely frost susceptible as well as impaired in the expression of several cold-regulated genes. Here we investigated the transcriptome of barley albina and xantha mutants and the corresponding wild type to assess the effect of the chloroplast on expression of cold-regulated genes. First, by comparing control wild type against cold-hardened wild-type plants 2,735 probe sets with statistically significant changes (P = 0.05; > or = 2-fold change) were identified. Expression of these wild-type cold-regulated genes was then analyzed in control and cold-hardened mutants. Only about 11% of the genes cold regulated in wild type were regulated to a similar extent in all genotypes (chloroplast-independent cold-regulated genes); this class includes many genes known to be under C-repeat binding factor control. C-repeat binding factor genes were also equally induced in mutants and wild-type plants. About 67% of wild-type cold-regulated genes were not regulated by cold in any mutant (chloroplast-dependent cold-regulated genes). We found that the lack of cold regulation in the mutants is due to the presence of signaling pathway(s) normally cold activated in wild type but constitutively active in the mutants, as well as to the disruption of low-temperature signaling pathway(s) due to the absence of active chloroplasts. We also found that photooxidative stress signaling pathway is constitutively active in the mutants. These results demonstrate the major role of the chloroplast in the control of the molecular adaptation to cold.


Assuntos
Aclimatação/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Hordeum/genética , RNA Mensageiro/metabolismo , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese , Transdução de Sinais
7.
Planta ; 221(5): 705-15, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15666155

RESUMO

Following the screening of a suppression subtractive library developed from durum wheat plants exposed to low temperature for 6 h, two early cold-regulated (e-cor) genes have been isolated. These genes, coding putatively for a ribokinase (7H8) and a C3H2C3 RING-finger protein (6G2), were characterized by the stress-induced retention of a subset of introns in the mature mRNA. This feature was dependent on cold for 7H8 and on cold and dehydration for 6G2. When other genes, such as the stress-related gene WCOR410c, coding for a dehydrin (one intron), or a gene coding for a putative ATP binding cassette transporter (16 introns) were analyzed, no cold-dependent intron retention was observed. Cold-induced intron retention was not observed in mutants defective in the chloroplast development; nevertheless treatment with cycloheximide in the absence of cold was able to promote intron retention for the 7H8 e-cor gene. These results suggest that the cold-induced intron retention reflects the response of the spliceosoma to specific environmental signals transduced to the splicing protein factors through a chloroplast-dependent pathway. Notably, when the 7H8 Arabidopsis orthologous gene was analyzed, no stress induction in terms of mRNA abundance and no cold-dependent intron retention was detected. Otherwise, 6G2 Arabidopsis homologous sequences sharing the same genomic structure of the durum wheat 6G2 showed a similar intron retention event although not strictly dependent on stress.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas/fisiologia , Íntrons/fisiologia , Triticum/metabolismo , Arabidopsis/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Hordeum/genética , Hordeum/metabolismo , Mutação , Proteínas de Plantas/metabolismo , Triticum/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...