Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Crit Care ; 27(1): 21, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650593

RESUMO

BACKGROUND: In patients with acute respiratory distress syndrome undergoing mechanical ventilation, positive end-expiratory pressure (PEEP) can lead to recruitment or overdistension. Current strategies utilized for PEEP titration do not permit the distinction. Electric impedance tomography (EIT) detects and quantifies the presence of both collapse and overdistension. We investigated whether using EIT-guided PEEP titration leads to decreased mechanical power compared to high-PEEP/FiO2 tables. METHODS: A single-center, randomized crossover pilot trial comparing EIT-guided PEEP selection versus PEEP selection using the High-PEEP/FiO2 table in patients with moderate-severe acute respiratory distress syndrome. The primary outcome was the change in mechanical power after each PEEP selection strategy. Secondary outcomes included changes in the 4 × driving pressure + respiratory rate (4 ΔP, + RR index) index, driving pressure, plateau pressure, PaO2/FiO2 ratio, and static compliance. RESULTS: EIT was consistently associated with a decrease in mechanical power compared to PEEP/FiO2 tables (mean difference - 4.36 J/min, 95% CI - 6.7, - 1.95, p = 0.002) and led to lower values in the 4ΔP + RR index (- 11.42 J/min, 95% CI - 19.01, - 3.82, p = 0.007) mainly driven by a decrease in the elastic-dynamic power (- 1.61 J/min, - 2.99, - 0.22, p = 0.027). The elastic-static and resistive powers were unchanged. Similarly, EIT led to a statistically significant change in set PEEP (- 2 cmH2O, p = 0.046), driving pressure, (- 2.92 cmH2O, p = 0.003), peak pressure (- 6.25 cmH2O, p = 0.003), plateau pressure (- 4.53 cmH2O, p = 0.006), and static respiratory system compliance (+ 7.93 ml/cmH2O, p = 0.008). CONCLUSIONS: In patients with moderate-severe acute respiratory distress syndrome, EIT-guided PEEP titration reduces mechanical power mainly through a reduction in elastic-dynamic power. Trial registration This trial was prospectively registered on Clinicaltrials.gov (NCT03793842) on January 4th, 2019.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Impedância Elétrica , Projetos Piloto , Síndrome do Desconforto Respiratório/terapia , Respiração com Pressão Positiva/métodos , Tomografia/métodos
2.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36264633

RESUMO

Identifying host factors that contribute to pneumonia incidence and severity are of utmost importance to guiding the development of more effective therapies. Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, encoded by OLR1) is a scavenger receptor known to promote vascular injury and inflammation, but whether and how LOX-1 functions in the lung are unknown. Here, we provide evidence of substantial accumulation of LOX-1 in the lungs of patients with acute respiratory distress syndrome and in mice with pneumonia. Unlike previously described injurious contributions of LOX-1, we found that LOX-1 is uniquely protective in the pulmonary airspaces, limiting proteinaceous edema and inflammation. We also identified alveolar macrophages and recruited neutrophils as 2 prominent sites of LOX-1 expression in the lungs, whereby macrophages are capable of further induction during pneumonia and neutrophils exhibit a rapid, but heterogenous, elevation of LOX-1 in the infected lung. Blockade of LOX-1 led to dysregulated immune signaling in alveolar macrophages, marked by alterations in activation markers and a concomitant elevation of inflammatory gene networks. However, bone marrow chimeras also suggested a prominent role for neutrophils in LOX-1-mediated lung protection, further supported by LOX-1+ neutrophils exhibiting transcriptional changes consistent with reparative processes. Taken together, this work establishes LOX-1 as a tissue-protective factor in the lungs during pneumonia, possibly mediated by its influence on immune signaling in alveolar macrophages and LOX-1+ airspace neutrophils.


Assuntos
Lesão Pulmonar , Pneumonia , Receptores Depuradores Classe E , Animais , Camundongos , Receptores Depuradores Classe E/genética
3.
Sci Signal ; 15(725): eabl9322, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35290084

RESUMO

Sepsis is a major health issue with mortality exceeding 30% and few treatment options. We found that high-density lipoprotein cholesterol (HDL-C) abundance was reduced by 45% in septic patients compared to that in nonseptic patients. Furthermore, HDL-C abundance in nonsurviving septic patients was substantially lower than in those patients who survived. We therefore hypothesized that replenishing HDL might be a therapeutic approach for treating sepsis and found that supplementing HDL with synthetic HDL (sHDL) provided protection against sepsis in mice. In mice subjected to cecal ligation and puncture (CLP), infusing the sHDL ETC-642 increased plasma HDL-C amounts and improved the 7-day survival rate. Septic mice treated with sHDL showed improved kidney function and reduced inflammation, as indicated by marked decreases in the plasma concentrations of blood urea nitrogen (BUN) and the cytokines interleukin-6 (IL-6) and IL-10, respectively. We found that sHDL inhibited the ability of the endotoxins LPS and LPA to activate inflammatory pathways in RAW264.7 cells and HEK-Blue cells expressing the receptors TLR4 or TLR2 and NF-κB reporters. In addition, sHDL inhibited the activation of HUVECs by LPS, LTA, and TNF-α. Together, these data indicate that sHDL treatment protects mice from sepsis in multiple ways and that it might be an effective therapy for patients with sepsis.


Assuntos
Sepse , Animais , Citocinas/metabolismo , Humanos , Interleucina-6/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Sepse/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
Lancet Respir Med ; 10(1): 107-120, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310901

RESUMO

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome. Understanding of the complex pathways involved in lung injury pathogenesis, resolution, and repair has grown considerably in recent decades. Nevertheless, to date, only therapies targeting ventilation-induced lung injury have consistently proven beneficial, and despite these gains, ARDS morbidity and mortality remain high. Many candidate therapies with promise in preclinical studies have been ineffective in human trials, probably at least in part due to clinical and biological heterogeneity that modifies treatment responsiveness in human ARDS. A precision medicine approach to ARDS seeks to better account for this heterogeneity by matching therapies to subgroups of patients that are anticipated to be most likely to benefit, which initially might be identified in part by assessing for heterogeneity of treatment effect in clinical trials. In October 2019, the US National Heart, Lung, and Blood Institute convened a workshop of multidisciplinary experts to explore research opportunities and challenges for accelerating precision medicine in ARDS. Topics of discussion included the rationale and challenges for a precision medicine approach in ARDS, the roles of preclinical ARDS models in precision medicine, essential features of cohort studies to advance precision medicine, and novel approaches to clinical trials to support development and validation of a precision medicine strategy. In this Position Paper, we summarise workshop discussions, recommendations, and unresolved questions for advancing precision medicine in ARDS. Although the workshop took place before the COVID-19 pandemic began, the pandemic has highlighted the urgent need for precision therapies for ARDS as the global scientific community grapples with many of the key concepts, innovations, and challenges discussed at this workshop.


Assuntos
Medicina de Precisão , Síndrome do Desconforto Respiratório , COVID-19 , Humanos , Síndrome do Desconforto Respiratório/terapia
5.
Adv Healthc Mater ; 11(7): e2101534, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34881524

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain problematic due to high mortality rates and lack of effective treatments. Neutrophilic injury contributes to mortality in ALI/ARDS. Here, technology for rapid ARDS intervention is developed and evaluated, where intravenous salicylic acid-based polymer microparticles, i.e., Poly-Aspirin (Poly-A), interfere with neutrophils in blood, reducing lung neutrophil infiltration and injury in vivo in mouse models of ALI/ARDS. Importantly, Poly-A particles reduce multiple inflammatory cytokines in the airway and bacterial load in the bloodstream in a live bacteria lung infection model of ARDS, drastically improving survival. It is observed that phagocytosis of the Poly-A microparticles, with salicylic acid in the polymer backbone, alters the neutrophil surface expression of adhesion molecules, potentially contributing to their added therapeutic benefits. Given the proven safety profile of the microparticle degradation products-salicylic acid and adipic acid-it is anticipated that the Poly-A particles represent a therapeutic strategy in ARDS with a rare opportunity for rapid clinical translation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Camundongos , Infiltração de Neutrófilos , Polímeros/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Ácido Salicílico/uso terapêutico
6.
Front Immunol ; 12: 754702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887860

RESUMO

The IL-36 family of cytokines were identified in the early 2000's as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.


Assuntos
Inflamação/imunologia , Interleucina-1/imunologia , Pneumopatias/imunologia , Animais , Humanos
7.
Front Immunol ; 12: 761345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950139

RESUMO

Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection that often results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). An emerging mechanism of sepsis-induced ARDS involves neutrophils/macrophages undergoing cell death, releasing nuclear histones to cause tissue damage that exacerbates pulmonary injury. While published studies focus on unmodified histones, little is known about the role of citrullinated histone H3 (CitH3) in the pathogenesis of sepsis and ALI. In this study, we found that levels of CitH3 were elevated in the patients with sepsis-induced ARDS and correlated to PaO2/FiO2 in septic patients. Systematic administration of CitH3 peptide in mice provoked Caspase-1 activation in the lung tissue and caused ALI. Neutralization of CitH3 with monoclonal antibody improved survival and attenuated ALI in a mouse sepsis model. Furthermore, we demonstrated that CitH3 induces ALI through activating Caspase-1 dependent inflammasome in bone marrow derived macrophages and bone marrow derived dendritic cells. Our study suggests that CitH3 is an important mediator of inflammation and mortality during sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda/imunologia , Histonas/imunologia , Síndrome do Desconforto Respiratório/imunologia , Sepse/imunologia , Lesão Pulmonar Aguda/etiologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Caspase 1/imunologia , Células Cultivadas , Citrulinação , Células Dendríticas/imunologia , Humanos , Inflamassomos/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome do Desconforto Respiratório/etiologia , Sepse/complicações
8.
J Immunol ; 207(11): 2868-2877, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34686582

RESUMO

The IL-36 cytokines are known to play various roles in mediating the immune response to infection in a tissue- and pathogen-dependent manner. The present study seeks to investigate the role of IL-36R signaling in C57BL/6 mouse corneas in response to Pseudomonas aeruginosa infection. IL-36α-/-, IL-36γ-/-, and IL-36R-/- mice had significantly more severe keratitis than wild-type mice. At six hours postinfection, IL-36α pretreatment augmented P. aeruginosa-induced expression of IL-1Ra, IL-36γ, LCN2, and S100A8/A9. At one day postinfection, exogenous IL-36α suppressed, whereas IL-36α deficiency promoted, the expression of IL-1ß. At three days postinfection, exogenous IL-36α suppressed Th1 but promoted Th2 immune response. IL-36α stimulated the infiltration of IL-22-expressing immune cells, and IL-22 neutralization resulted in more severe keratitis. IL-36α alone stimulated dendritic cell infiltration in B6 mouse corneas. Taken together, our study suggests that IL-36R signaling plays a protective role in the pathogenesis of P. aeruginosa keratitis by promoting the innate immune defense, Th2, and/or Th22/IL-22 immune responses. Exogenous IL-36α might be a potential therapy for improving the outcome of P. aeruginosa keratitis.


Assuntos
Córnea/imunologia , Interleucina-1/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Interleucina-1/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L451-L465, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34161747

RESUMO

Millions of people who survive sepsis each year are rehospitalized and die due to late pulmonary complications. To prevent and treat these complications, biomarkers and molecular mediators must be identified. Persistent immune reprogramming in the form of immunoparalysis and impaired host defense is proposed to mediate late pulmonary complications after sepsis, particularly new pulmonary infections. However, immune reprogramming may also involve enhanced/primed responses to secondary stimuli, although their contribution to long-term sepsis complications remains understudied. We hypothesize that enhanced/primed immune responses in the lungs of sepsis survivors are associated with late pulmonary complications. To this end, we developed a murine sepsis model using cecal ligation and puncture (CLP) followed 3 wk later by administration of intranasal lipopolysaccharide to induce inflammatory lung injury. Mice surviving sepsis exhibit enhanced lung injury with increased alveolar permeability, neutrophil recruitment, and enhanced Ly6Chi monocyte Tnf expression. To determine the mediators of enhanced lung injury, we performed flow cytometry and RNA sequencing of lungs 3 wk after CLP, prior to lipopolysaccharide. Sepsis survivor mice showed expanded Ly6Chi monocytes populations and increased expression of many inflammatory genes. Of these, S100A8/A9 was also elevated in the circulation of human sepsis survivors for months after sepsis, validating our model and identifying S100A8/A9 as a potential biomarker and therapeutic target for long-term pulmonary complications after sepsis. These data provide new insight into the importance of enhanced/primed immune responses in survivors of sepsis and establish a foundation for additional investigation into the mechanisms mediating this response.


Assuntos
Lipopolissacarídeos/toxicidade , Lesão Pulmonar/imunologia , Sepse/imunologia , Animais , Calgranulina A/imunologia , Calgranulina B/imunologia , Feminino , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Camundongos , Monócitos/imunologia , Monócitos/patologia , Sepse/induzido quimicamente , Sepse/patologia , Fator de Necrose Tumoral alfa/imunologia
10.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824208

RESUMO

Interleukin-36γ (IL-36γ), a member of the IL-1 cytokine superfamily, amplifies lung inflammation and impairs host defense during acute pulmonary Pseudomonas aeruginosa infection. To be fully active, IL-36γ is cleaved at its N-terminal region by proteases such as neutrophil elastase (NE) and cathepsin S (CatS). However, it remains unclear whether limiting extracellular proteolysis restrains the inflammatory cascade triggered by IL-36γ during P. aeruginosa infection. Thrombospondin-1 (TSP-1) is a matricellular protein with inhibitory activity against NE and the pathogen-secreted Pseudomonas elastase LasB-both proteases implicated in amplifying inflammation. We hypothesized that TSP-1 tempers the inflammatory response during lung P. aeruginosa infection by inhibiting the proteolytic environment required for IL-36γ activation. Compared to wild-type (WT) mice, TSP-1-deficient (Thbs1-/-) mice exhibited a hyperinflammatory response in the lungs during P. aeruginosa infection, with increased cytokine production and an unrestrained extracellular proteolytic environment characterized by higher free NE and LasB, but not CatS activity. LasB cleaved IL-36γ proximally to M19 at a cleavage site distinct from those generated by NE and CatS, which cleave IL-36γ proximally to Y16 and S18, respectively. N-terminal truncation experiments in silico predicted that the M19 and the S18 isoforms bind the IL-36R complex almost identically. IL-36γ neutralization ameliorated the hyperinflammatory response and improved lung immunity in Thbs1-/- mice during P. aeruginosa infection. Moreover, administration of cleaved IL-36γ induced cytokine production and neutrophil recruitment and activation that was accentuated in Thbs1-/- mice lungs. Collectively, our data show that TSP-1 regulates lung neutrophilic inflammation and facilitates host defense by restraining the extracellular proteolytic environment required for IL-36γ activation.IMPORTANCEPseudomonas aeruginosa pulmonary infection can lead to exaggerated neutrophilic inflammation and tissue destruction, yet host factors that regulate the neutrophilic response are not fully known. IL-36γ is a proinflammatory cytokine that dramatically increases in bioactivity following N-terminal processing by proteases. Here, we demonstrate that thrombospondin-1, a host matricellular protein, limits N-terminal processing of IL-36γ by neutrophil elastase and the Pseudomonas aeruginosa-secreted protease LasB. Thrombospondin-1-deficient mice (Thbs1-/-) exhibit a hyperinflammatory response following infection. Whereas IL-36γ neutralization reduces inflammatory cytokine production, limits neutrophil activation, and improves host defense in Thbs1-/- mice, cleaved IL-36γ administration amplifies neutrophilic inflammation in Thbs1-/- mice. Our findings indicate that thrombospondin-1 guards against feed-forward neutrophilic inflammation mediated by IL-36γ in the lung by restraining the extracellular proteolytic environment.


Assuntos
Inflamação/microbiologia , Interleucina-1/imunologia , Pulmão/microbiologia , Neutrófilos/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Trombospondina 1/genética , Animais , Feminino , Interações Hospedeiro-Patógeno , Interleucina-1/classificação , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Trombospondina 1/imunologia
12.
Infection ; 49(1): 83-93, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33000445

RESUMO

PURPOSE: Microbial infection stimulates neutrophil/macrophage/monocyte extracellular trap formation, which leads to the release of citrullinated histone H3 (CitH3) catalyzed by peptidylarginine deiminase (PAD) 2 and 4. Understanding these molecular mechanisms in the pathogenesis of septic shock will be an important next step for developing novel diagnostic and treatment modalities. We sought to determine the expression of CitH3 in patients with septic shock, and to correlate CitH3 levels with PAD2/PAD4 and clinically relevant outcomes. METHODS: Levels of CitH3 were measured in serum samples of 160 critically ill patients with septic and non-septic shock, and healthy volunteers. Analyses of clinical and laboratory characteristics of patients were conducted. RESULTS: Levels of circulating CitH3 at enrollment were significantly increased in septic shock patients (n = 102) compared to patients hospitalized with non-infectious shock (NIC) (n = 32, p < 0.0001). The area under the curve (95% CI) for distinguishing septic shock from NIC using CitH3 was 0.76 (0.65-0.86). CitH3 was positively correlated with PAD2 and PAD4 concentrations and Sequential Organ Failure Assessment Scores [total score (r = 0.36, p < 0.0001)]. The serum levels of CitH3 at 24 h (p < 0.01) and 48 h (p < 0.05) were significantly higher in the septic patients that did not survive. CONCLUSION: CitH3 is increased in patients with septic shock. Its serum concentrations correlate with disease severity and prognosis, which may yield vital insights into the pathophysiology of sepsis.


Assuntos
Citrulina/metabolismo , Histonas , Choque Séptico/diagnóstico , Choque/diagnóstico , Idoso , Diagnóstico Diferencial , Feminino , Histonas/sangue , Histonas/química , Humanos , Masculino , Pessoa de Meia-Idade , Pró-Calcitonina/sangue , Proteína-Arginina Desiminase do Tipo 2/sangue , Proteína-Arginina Desiminase do Tipo 4/sangue , Estudos Retrospectivos , Choque/sangue , Choque/epidemiologia , Choque Séptico/sangue , Choque Séptico/epidemiologia , Resultado do Tratamento
13.
Am J Respir Cell Mol Biol ; 64(2): 173-182, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33105081

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung disease with high morbidity and mortality. The IL-36 family are proinflammatory cytokines that are known to shape innate immune responses, including those critical to bacterial pneumonia. The objective of this study was to determine whether IL-36 cytokines promote a proinflammatory milieu in the lungs of long-term smokers with and without COPD. Concentrations of IL-36 cytokines were measured in plasma and BAL fluid from subjects in a pilot study (n = 23) of long-term smokers with and without COPD in vivo and from a variety of lung cells (from 3-5 donors) stimulated with bacteria or cigarette smoke components in vitro. Pulmonary macrophages were stimulated with IL-36 cytokines in vitro, and chemokine and cytokine production was assessed. IL-36α and IL-36γ are produced to varying degrees in murine and human lung cells in response to bacterial stimuli and cigarette smoke components in vitro. Moreover, whereas IL-36γ production is upregulated early after cigarette smoke stimulation and wanes over time, IL-36α production requires a longer duration of exposure. IL-36α and IL-36γ are enhanced systemically and locally in long-term smokers with and without COPD, and local IL-36α concentrations display a positive correlation with declining ventilatory lung function and increasing proinflammatory cytokine concentrations. In vitro, IL-36α and IL-36γ induce proinflammatory chemokines and cytokines in a concentration-dependent fashion that requires IL-36R and MyD88. IL-36 cytokine production is altered in long-term smokers with and without COPD and contributes to shaping a proinflammatory milieu in the lungs.


Assuntos
Citocinas/imunologia , Interleucina-1/imunologia , Pulmão/imunologia , Pneumonia/imunologia , Fumar/imunologia , Adulto , Idoso , Animais , Feminino , Humanos , Imunidade Inata/imunologia , Macrófagos Alveolares/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/imunologia , Fumantes
14.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055424

RESUMO

Peptidylarginine deiminases (PADs) are a family of calcium-dependent enzymes that are involved in a variety of human disorders, including cancer and autoimmune diseases. Although targeting PAD4 has shown no benefit in sepsis, the role of PAD2 remains unknown. Here, we report that PAD2 is engaged in sepsis and sepsis-induced acute lung injury in both human patients and mice. Pad2-/- or selective inhibition of PAD2 by a small molecule inhibitor increased survival and improved overall outcomes in mouse models of sepsis. Pad2 deficiency decreased neutrophil extracellular trap (NET) formation. Importantly, Pad2 deficiency inhibited Caspase-11-dependent pyroptosis in vivo and in vitro. Suppression of PAD2 expression reduced inflammation and increased macrophage bactericidal activity. In contrast to Pad2-/-, Pad4 deficiency enhanced activation of Caspase-11-dependent pyroptosis in BM-derived macrophages and displayed no survival improvement in a mouse sepsis model. Collectively, our findings highlight the potential of PAD2 as an indicative marker and therapeutic target for sepsis.


Assuntos
Lesão Pulmonar Aguda/genética , Doenças Autoimunes/genética , Inflamação/genética , Proteína-Arginina Desiminase do Tipo 2/genética , Sepse/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Doenças Autoimunes/sangue , Doenças Autoimunes/patologia , Biomarcadores/sangue , Caspases Iniciadoras/genética , Armadilhas Extracelulares/genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Proteína-Arginina Desiminase do Tipo 2/antagonistas & inibidores , Piroptose/genética , Sepse/sangue , Sepse/complicações , Sepse/patologia
15.
Psychoneuroendocrinology ; 117: 104679, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353815

RESUMO

Severe acute stressors are known to trigger mood disorders in humans. Sepsis represents one such stressor, and survivors often suffer long term from psychiatric morbidity. We hypothesized that sepsis leads to lasting changes in neural circuits involved in stress integration, altering affective behavior and the stress response. To investigate this hypothesis, sepsis was induced in male C57Bl/6 mice using cecal ligation and puncture (CLP), and control mice underwent sham surgery. Mice recovered from acute illness within 2 weeks, after which they exhibited increased avoidance behavior and behavioral despair compared with sham, with behavioral changes observed more than 5 weeks after recovery. Sepsis survivors also showed evidence of enhanced hypothalamic-pituitary-adrenal (HPA) axis activity, with increased corticosterone after a novel stressor and increased adrenal weight. In the brain, sepsis survivor mice showed decreased stress-induced cfos mRNA and increased glucocorticoid receptor immunoreactivity specifically in the ventral hippocampus, a brain region known to coordinate emotional behavior and HPA axis activity. We conclude that murine sepsis survivors exhibit a behavioral neuroendocrine syndrome of negative affective behavior and HPA axis hyperactivity, which could be explained by ventral hippocampal dysfunction. These findings could contribute to our understanding of the human post-intensive care syndrome.


Assuntos
Ansiedade/fisiopatologia , Corticosterona/metabolismo , Estado Terminal , Depressão/fisiopatologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sepse/complicações , Estresse Psicológico/metabolismo , Doença Aguda , Animais , Ansiedade/etiologia , Comportamento Animal/fisiologia , Depressão/etiologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Estresse Psicológico/complicações , Estresse Psicológico/etiologia
16.
Microbes Infect ; 22(8): 312-321, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31958572

RESUMO

Pneumococcal conjugate vaccination (PCV) may prevent influenza-related pneumonia, including Streptococcus pneumoniae pneumonia. To investigate PCV efficacy against secondary pneumococcal pneumonia following influenza, PCV was administered intramuscularly 2 and 5 weeks before S. pneumoniae serotype-3 colonization of murine nasopharynges followed by intranasal challenge with a sublethal dose of influenza A virus. Bacterial and viral loads, including innate immune responses were compared across conditions. PCV vaccination improved the survival of mice with secondary pneumococcal pneumonia and significantly reduced the pulmonary bacterial burden. Increased monocyte/macrophage influx into the lungs, alleviated loss of alveolar macrophages and decreased neutrophil influx into the lungs occurred in PCV-treated mice irrespective of pneumococcal colonization. Higher monocyte chemoattractant protein 1 levels and lower levels of CXCL1, interferon-γ, interleukin-17A, and IL-10, were detected in PCV-treated mice. Additionally, PCV treatment activated the macrophage intracellular killing of S. pneumoniae. Collectively, PCV potentially modulates the host's innate immunity and specific antibodies induction. Macrophage-related innate immunity should be further explored to elucidate the efficacy and mechanisms of PCV versus influenza-related life-threatening diseases.


Assuntos
Coinfecção/imunologia , Imunidade Inata , Macrófagos/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinas Pneumocócicas/imunologia , Pneumonia Pneumocócica/imunologia , Animais , Anticorpos Antibacterianos/sangue , Antígeno B7-2/metabolismo , Carga Bacteriana , Coinfecção/microbiologia , Coinfecção/mortalidade , Coinfecção/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Vírus da Influenza A , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Macrófagos/microbiologia , Camundongos , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/microbiologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Fagocitose , Vacinas Pneumocócicas/administração & dosagem , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/mortalidade , Pneumonia Pneumocócica/virologia , Streptococcus pneumoniae , Taxa de Sobrevida , Vacinação , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
18.
Shock ; 54(1): 78-86, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31415473

RESUMO

Pneumonia is the leading cause of sepsis and septic shock. Patients who survive pneumonia are vulnerable to long-term complications including increased risk of neurocognitive dysfunction. This study investigated the immune response and long-term complications of a non-surgical mouse model of Klebsiella pneumoniae pneumosepsis with antibiotic treatment. Pneumosepsis resulted in acutely enhanced expression of inflammatory cytokines, chemokines, and damage-associated molecular patterns in the brain and spleen. Despite resolution of infection, murine pneumosepsis survivors demonstrated a deficit in exploratory locomotor behavior at 2 weeks. This was associated with brain-specific persistent inflammatory gene expression and infiltrating myeloid cells in the brain. The brain inflammatory response was also primed in response to secondary challenge with lipopolysaccharide. The findings of this study demonstrate behavioral and inflammatory outcomes that parallel observations in other models of sepsis, but that have not previously been described in antibiotic-treated pneumonia models, highlighting a common pathway to the development of chronic brain dysfunction in sepsis survival.


Assuntos
Encéfalo/patologia , Pneumonia Bacteriana/mortalidade , Sepse/mortalidade , Animais , Encéfalo/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/patologia , Klebsiella pneumoniae , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Teste de Campo Aberto , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/patologia , Sepse/imunologia , Sepse/patologia
19.
Front Immunol ; 10: 2148, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708911

RESUMO

Inflammation after trauma is both critical to normal wound healing and may be highly detrimental when prolonged or unchecked with the potential to impair physiologic healing and promote de novo pathology. Mechanical strain after trauma is associated with impaired wound healing and increased inflammation. The exact mechanisms behind this are not fully elucidated. Neutrophil extracellular traps (NETs), a component of the neutrophil response to trauma, are implicated in a range of pro-inflammatory conditions. In the current study, we evaluated their role in linking movement and inflammation. We found that a link exists between the disruption and amplification of NETs which harbors the potential to regulate the wound's response to mechanical strain, while leaving the initial inflammatory signal necessary for physiologic wound healing intact.


Assuntos
Movimento Celular/imunologia , Armadilhas Extracelulares/imunologia , Neutrófilos/imunologia , Estresse Mecânico , Ferimentos e Lesões/imunologia , Animais , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Neutrófilos/patologia , Ferimentos e Lesões/patologia
20.
Int J Chron Obstruct Pulmon Dis ; 14: 2015-2025, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564849

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a systemic condition that is too complex to be assessed by lung function alone. Metabolomics has the potential to help understand the mechanistic underpinnings that contribute to COPD pathogenesis. Since blood metabolomics may be affected by sex and body mass index (BMI), the aim of this study was to determine the metabolomic variability in male smokers with and without COPD who have a narrow BMI range. Methods: We compared the quantitative proton nuclear magnetic resonance acquired serum metabolomics of a male Chinese Han population of non-smokers without COPD, and smokers with and without COPD. We also assessed the impact of smoking status on metabolite concentrations and the associations between metabolite concentrations and inflammatory markers such as serum interleukin-6 and histamine, and blood cell differential (%). Metabolomics data were log-transformed and auto-scaled for parametric statistical analysis. Mean normalized metabolite concentration values and continuous demographic variables were compared by Student's t-test with Welch correction or ANOVA with post-hoc Tukey's test, as applicable; t-test p-values for metabolomics data were corrected for false discovery rate (FDR). A Pearson association matrix was built to evaluate the relationship between metabolite concentrations, clinical parameters and markers of inflammation. Results: Twenty-eight metabolites were identified and quantified. Creatine, glycine, histidine, and threonine concentrations were reduced in COPD patients compared to non-COPD smokers (FDR ≤15%). Concentrations of these metabolites were inversely correlated with interleukin-6 levels. COPD patients had overall dampening of metabolite concentrations including energy-related metabolic pathways such as creatine metabolism. They also had higher histamine levels and percent basophils compared to smokers without COPD. Conclusion: COPD is associated with alterations in the serum metabolome, including a disruption in the histidine-histamine and creatine metabolic pathways. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in COPD.Trial registration www.clinicaltrials.gov, NCT03310177.


Assuntos
Metabolismo Energético/fisiologia , Histidina/sangue , Metabolômica/métodos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Seguimentos , Homeostase , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Estudos Retrospectivos , Espirometria , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...