Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 57(33): 9855-9862, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462021

RESUMO

Phase retrieval and the twin-image problem in digital in-line holographic microscopy can be resolved by iterative reconstruction routines. However, recovering the phase properties of an object in a hologram requires an object plane to be chosen correctly for reconstruction. In this work, we present a novel multi-wavelength iterative algorithm to determine the object plane using single-shot holograms recorded at multiple wavelengths in an in-line holographic microscope. Using micro-sized objects, we verify the object positioning capabilities of the method for various shapes and derive the phase information using synthetic and experimental data. Experimentally, we built a compact digital in-line holographic microscopy setup around a standard optical microscope with a regular RGB-CCD camera and acquired holograms of micro-spheres, E. coli, and red blood cells, which are illuminated using three lasers operating at 491 nm, 532 nm, and 633 nm, respectively. We demonstrate that our method provides accurate object plane detection and phase retrieval under noisy conditions, e.g., using low-contrast holograms with an inhomogeneous background. This method allows for automatic positioning and phase retrieval suitable for holographic particle velocimetry, and object tracking in biophysical or colloidal research.

2.
Opt Lett ; 43(9): 1990-1993, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714728

RESUMO

We present a versatile three-lens optical design to improve the overall compactness, efficiency, and robustness for optical tweezers based applications. The design, inspired by the Cooke-Triplet configuration, allows for continuous beam magnifications of 2-10×, and axial as well as lateral focal shifts can be realized without switching lenses or introducing optical aberrations. We quantify the beam quality and trapping stiffness and compare the Cooke-Triplet design with the commonly used double Kepler design through simulations and direct experiments. Optical trapping of 1 and 2 µm beads shows that the Cooke-Triplet possesses an equally strong optical trap stiffness compared to the double Kepler lens design but reduces its lens system length by a factor of 2.6. Finally, we demonstrate how a Twyman-Green interferometer integrated in the Cooke-Triplet optical tweezers setup provides a fast and simple method to characterize the wavefront aberrations in the lens system and how it can help in aligning the optical components perfectly.

3.
Microbiology (Reading) ; 164(4): 483-494, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29509130

RESUMO

We report an interpolation model to calculate the hydrodynamic force on tethered capsule-shaped cells in micro-fluidic flows near a surface. Our model is based on numerical solutions of the full Navier-Stokes equations for capsule-shaped objects considering their geometry, aspect ratio and orientation with respect to fluid flow. The model reproduced the results from computational fluid dynamic simulations, with an average error of <0.15 % for objects with an aspect ratio up to 5, and the model exactly reproduced the Goldman approximation of spherical objects close to a surface. We estimated the hydrodynamic force imposed on tethered Escherichia coli cells using the interpolation model and approximate models found in the literature, for example, one that assumes that E. coli is ellipsoid shaped. We fitted the 2D-projected area of a capsule and ellipsoid to segmented E. coli cells. We found that even though an ellipsoidal shape is a reasonable approximation of the cell shape, the capsule gives 4.4 % better agreement, a small difference that corresponds to 15 % difference in hydrodynamic force. In addition, we showed that the new interpolation model provides a significantly better agreement compared to estimates from commonly used models and that it can be used as a fast and accurate substitute for complex and computationally heavy fluid dynamic simulations. This is useful when performing bacterial adhesion experiments in parallel-plate flow channels. We include a MATLAB script that can track cells in a video time-series and estimate the hydrodynamic force using our interpolation formula.


Assuntos
Aderência Bacteriana/fisiologia , Escherichia coli/citologia , Hidrodinâmica , Modelos Biológicos , Simulação por Computador , Microfluídica , Reprodutibilidade dos Testes
4.
Sci Rep ; 8(1): 3372, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463819

RESUMO

We report a novel method for fabrication of three-dimensional (3D) biocompatible micro-fluidic flow chambers in polydimethylsiloxane (PDMS) by 3D-printing water-soluble polyvinyl alcohol (PVA) filaments as master scaffolds. The scaffolds are first embedded in the PDMS and later residue-free dissolved in water leaving an inscription of the scaffolds in the hardened PDMS. We demonstrate the strength of our method using a regular, cheap 3D printer, and evaluate the inscription process and the channels micro-fluidic properties using image analysis and digital holographic microscopy. Furthermore, we provide a protocol that allows for direct printing on coverslips and we show that flow chambers with a channel cross section down to 40 µm × 300 µm can be realized within 60 min. These flow channels are perfectly transparent, biocompatible and can be used for microscopic applications without further treatment. Our proposed protocols facilitate an easy, fast and adaptable production of micro-fluidic channel designs that are cost-effective, do not require specialized training and can be used for a variety of cell and bacterial assays. To help readers reproduce our micro-fluidic devices, we provide: full preparation protocols, 3D-printing CAD files for channel scaffolds and our custom-made molding device, 3D printer build-plate leveling instructions, and G-code.

5.
Appl Opt ; 56(19): 5427-5435, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047500

RESUMO

Wide field-of-view imaging of fast processes in a microscope requires high light intensities motivating the use of lasers as light sources. However, due to their long spatial coherence length, lasers are inappropriate for such applications, as they produce coherent noise and parasitic reflections, such as speckle, degrading image quality. Therefore, we provide a step-by-step guide for constructing a speckle-free and high-contrast laser illumination setup using a rotating ground glass diffuser driven by a stepper motor. The setup is easy to build, cheap, and allows a significant light throughput of 48%, which is 40% higher in comparison to a single lens collector commonly used in reported setups. This is achieved by using only one objective to collect the scattered light from the ground glass diffuser. We validate our setup in terms of image quality, speckle contrast, motor-induced vibrations, and light throughput. To highlight the latter, we record Brownian motion of micro-particles using a 100× oil immersion objective and a high-speed camera operating at 2000 Hz with a laser output power of only 22 mW. Moreover, by reducing the objective magnification to 50×, sampling rates up to 10,000 Hz are realized. To help readers with basic or advanced optics knowledge realize this setup, we provide a full component list, 3D-printing CAD files, setup protocol, and the code for running the stepper motor.

6.
Phys Biol ; 12(6): 066018, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689558

RESUMO

By combining enzyme-linked immunosorbent assay (ELISA) and optical tweezers-assisted dynamic force spectroscopy (DFS), we identify for the first time the binding epitope of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to the Alzheimer's disease relevant peptide tau[pThr231/pSer235] on the level of single amino acids. In particular, seven tau isoforms are synthesized by replacing binding relevant amino acids by a neutral alanine (alanine scanning). From the binding between mAb HPT-101 and the alanine-scan derivatives, we extract specific binding parameters such as bond lifetime τ0, binding length x(ts), free energy of activation ΔG (DFS) and affinity constant K(a) (ELISA, DFS). Based on these quantities, we propose criteria to identify essential, secondary and non-essential amino acids, being representative of the antibody binding epitope. The obtained results are found to be in full accord for both experimental techniques. In order to elucidate the microscopic origin of the change in binding parameters, we perform molecular dynamics (MD) simulations of the free epitope in solution for both its parent and modified form. By taking the end-to-end distance d(E-E) and the distance between the α-carbons d(C-C) of the phosphorylated residues as gauging parameters, we measure how the structure of the epitope depends on the type of substitution. In particular, whereas d(C-C) is sometimes conserved between the parent and modified form, d(E-E) strongly changes depending on the type of substitution, correlating well with the experimental data. These results are highly significant, offering a detailed microscopic picture of molecular recognition.


Assuntos
Anticorpos Monoclonais/química , Mapeamento de Epitopos/métodos , Proteínas tau/química , Ensaio de Imunoadsorção Enzimática , Simulação de Dinâmica Molecular , Pinças Ópticas , Análise Espectral
7.
ACS Nano ; 7(12): 11388-96, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24279833

RESUMO

Optical tweezers-assisted dynamic force spectroscopy is employed to investigate specific receptor-ligand interactions on the level of single binding events. In particular, we analyze binding of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to synthetic tau-peptides with two potential phosphorylation sites (Thr231 and Ser235), being the most probable markers for Alzheimer's disease. Whereas the typical interpretation of enzyme-linked immunosorbent assay (ELISA) suggests that this monoclonal antibody binds exclusively to the double-phosphorylated tau-peptide, we show here by DFS that the specificity of only mAb HPT-101 is apparent. In fact, binding occurs also to each sort of monophosphorylated peptide. Therefore, we characterize the unbinding process by analyzing the measured rupture force distributions, from which the lifetime of the bond without force τ0, its characteristic length xts, and the free energy of activation ΔG are extracted for the three mAb/peptide combinations. This information is used to build a simple theoretical model to predict features of the unbinding process for the double-phosphorylated peptide purely based on data on the monophosphorylated ones. Finally, we introduce a method to combine binding and unbinding measurements to estimate the relative affinity of the bonds. The values obtained for this quantity are in accordance with ELISA, showing how DFS can offer important insights about the dynamic binding process that are not accessible with this common and widespread assay.


Assuntos
Anticorpos Monoclonais/química , Pinças Ópticas , Proteínas tau/química , Proteínas tau/imunologia , Doença de Alzheimer/metabolismo , Epitopos/química , Humanos , Cinética , Modelos Teóricos , Peptídeos/química , Fosforilação , Ligação Proteica , Análise Espectral , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA