Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 58(8): 3785-3809, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37649453

RESUMO

Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) are a promising proxy for measuring effective connectivity, that is, the directed transmission of physiological signals along cortico-cortical tracts, and for developing connectivity-based biomarkers. A crucial point is how stimulation parameters may affect TEPs, as they may contribute to the general variability of findings across studies. Here, we manipulated two TMS parameters (i.e. current direction and pulse waveform) while measuring (a) an early TEP component reflecting contralateral inhibition of motor areas, namely, M1-P15, as an operative model of interhemispheric cortico-cortical connectivity, and (b) motor-evoked potentials (MEP) for the corticospinal pathway. Our results showed that these two TMS parameters are crucial to evoke the M1-P15, influencing its amplitude, latency, and replicability. Specifically, (a) M1-P15 amplitude was strongly affected by current direction in monophasic stimulation; (b) M1-P15 latency was significantly modulated by current direction for monophasic and biphasic pulses. The replicability of M1-P15 was substantial for the same stimulation condition. At the same time, it was poor when stimulation parameters were changed, suggesting that these factors must be controlled to obtain stable single-subject measures. Finally, MEP latency was modulated by current direction, whereas non-statistically significant changes were evident for amplitude. Overall, our study highlights the importance of TMS parameters for early TEP responses recording and suggests controlling their impact in developing connectivity biomarkers from TEPs. Moreover, these results point out that the excitability of the corticospinal tract, which is commonly used as a reference to set TMS intensity, may not correspond to the excitability of cortico-cortical pathways.


Assuntos
Potenciais Evocados , Estimulação Magnética Transcraniana , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Eletroencefalografia , Biomarcadores
2.
Biomedicines ; 11(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37371840

RESUMO

Multisensory integration is quintessential to adaptive behavior, with clinical populations showing significant impairments in this domain, most notably hallucinatory reports. Interestingly, altered cross-modal interactions have also been reported in healthy individuals when engaged in tasks such as the Sound-Induced Flash-Illusion (SIFI). The temporal dynamics of the SIFI have been recently tied to the speed of occipital alpha rhythms (IAF), with faster oscillations entailing reduced temporal windows within which the illusion is experienced. In this regard, entrainment-based protocols have not yet implemented rhythmic transcranial magnetic stimulation (rhTMS) to causally test for this relationship. It thus remains to be evaluated whether rhTMS-induced acoustic and somatosensory sensations may not specifically interfere with the illusion. Here, we addressed this issue by asking 27 volunteers to perform a SIFI paradigm under different Sham and active rhTMS protocols, delivered over the occipital pole at the IAF. Although TMS has been proven to act upon brain tissues excitability, results show that the SIFI occurred for both Sham and active rhTMS, with the illusory rate not being significantly different between baseline and stimulation conditions. This aligns with the discrete sampling hypothesis, for which alpha amplitude modulation, known to reflect changes in cortical excitability, should not account for changes in the illusory rate. Moreover, these findings highlight the viability of rhTMS-based interventions as a means to probe the neuroelectric signatures of illusory and hallucinatory audiovisual experiences, in healthy and neuropsychiatric populations.

3.
Front Neurosci ; 16: 896746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033609

RESUMO

In the seed-based method for studying functional connectivity (FC), seed selection is relevant. Here, we propose a new methodological approach for resting-state FC analysis of hand motor networks using the individual hand motor hotspot (hMHS) as seed. Nineteen right-handed healthy volunteers underwent a transcranial magnetic stimulation (TMS) session and resting-state fMRI. For each subject, the hMHS in both hemispheres was identified by TMS with the contralateral abductor pollicis brevis muscle as the target, the site eliciting the highest and most reliable motor-evoked potentials. Seed regions were built on coordinates on the cortex corresponding to the individual left and right hMHSs. For comparison, the left and right Brodmann's area 4 (BA4) masks extracted from a standard atlas were used as seed. The left and right hMHSs showed FC patterns at rest mainly including sensorimotor regions, with a bilateral connectivity only for the left hMHS. The statistical contrast BA4 > hMHS for both hemispheres showed different extension and lateralization of the functionally connected cortical regions. On the contrary, no voxels survived the opposite contrast (hMHS > BA4). This suggests that detection of individual hand motor seeds by TMS allows to identify functionally connected motor networks that are more specific with respect to those obtained starting from the a priori atlas-based identification of the primary motor cortex.

4.
PLoS One ; 11(10): e0164987, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27764182

RESUMO

Wireless implanted devices can be used to interface patients with disabilities with the aim of restoring impaired motor functions. Implanted devices that record and transmit electromyographic (EMG) signals have been applied for the control of active prostheses. This simulation study investigates the propagation losses and the absorption rate of a wireless radio frequency link for in-to-on body communication in the medical implant communication service (MICS) frequency band to control myoelectric upper limb prostheses. The implanted antenna is selected and a suitable external antenna is designed. The characterization of both antennas is done by numerical simulations. A heterogeneous 3D body model and a 3D electromagnetic solver have been used to model the path loss and to characterize the specific absorption rate (SAR). The path loss parameters were extracted and the SAR was characterized, verifying the compliance with the guideline limits. The path loss model has been also used for a preliminary link budget analysis to determine the feasibility of such system compliant with the IEEE 802.15.6 standard. The resulting link margin of 11 dB confirms the feasibility of the system proposed.


Assuntos
Membros Artificiais , Simulação por Computador , Eletromiografia/instrumentação , Ondas de Rádio , Tecnologia sem Fio , Absorção de Radiação , Membros Artificiais/efeitos adversos , Humanos , Imagens de Fantasmas
5.
Artigo em Inglês | MEDLINE | ID: mdl-26737192

RESUMO

In the last few years the use of implanted devices has been considered also in the field of myoelectric hand prostheses. Wireless implanted EMG (Electromyogram) sensors can improve the functioning of the prosthesis, providing information without the disadvantage of the wires, and the usability by amputees. The solutions proposed in the literature are based on proprietary communication protocols between the implanted devices and the prosthesis controller, using frequency bands that are already assigned to other purposes. This study proposes the use of a standard communication protocol (IEEE 802.15.6), specific for wireless body area networks (WBANs), which assign a specific bandwidth to implanted devices. The propagation losses from in-to-on body were investigated by numerical simulation with a 3D human model and an electromagnetic solver. The channel model resulting from the study represents the first step towards the development of myoelectric prosthetic hands which are driven by signals acquired by implanted sensors. However these results can provide important information to researchers for further developments, and manufacturers, which can decrease the production costs for hand prostheses having a common standard of communication with assigned frequencies of operation.


Assuntos
Membros Artificiais , Eletrodos Implantados , Amputados , Simulação por Computador , Cibernética , Eletromiografia , Humanos , Modelos Biológicos , Contração Muscular , Músculo Esquelético/fisiopatologia , Implantação de Prótese , Tecnologia sem Fio
6.
IEEE Trans Neural Syst Rehabil Eng ; 23(2): 189-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25389242

RESUMO

Research on pattern recognition for myoelectric control has usually focused on a small number of electromyography (EMG) channels because of better clinical acceptability and low computational load with respect to multi-channel EMG. However, recently, high density (HD) EMG technology has substantially improved, also in practical usability, and can thus be applied in myocontrol. HD EMG provides several closely spaced recordings in multiple locations over the skin surface. This study considered the use of HD EMG for controlling upper limb prostheses, based on pattern recognition. In general, robustness and reliability of classical pattern recognition systems are influenced by electrode shift in dons and doff, and by the presence of malfunctioning channels. The aim of this study is to propose a new approach to attenuate these issues. The HD EMG grid of electrodes is an ensemble of sensors that records data spatially correlated. The experimental variogram, which is a measure of the degree of spatial correlation, was used as feature for classification, contrary to previous approaches that are based on temporal or frequency features. The classification based on the variogram was tested on seven able-bodied subjects and one subject with amputation, for the classification of nine and seven classes, respectively. The performance of the proposed approach was comparable with the classic methods based on time-domain and autoregressive features (average classification accuracy over all methods ∼ 95% for nine classes). However, the new spatial features demonstrated lower sensitivity to electrode shift ( ± 1 cm) with respect to the classic features . When even just one channel was noisy, the classification accuracy dropped by ∼ 10% for all methods. However, the new method could be applied without any retraining to a subset of high-quality channels whereas the classic methods require retraining when some channels are omitted. In conclusion, the new spatial feature space proposed in this study improved the robustness to electrode number and shift in myocontrol with respect to previous approaches.


Assuntos
Artefatos , Eletromiografia/instrumentação , Eletromiografia/métodos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Adulto , Algoritmos , Eletrodos , Retroalimentação Fisiológica , Feminino , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...