Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol Lett ; 10(11): 1117-1124, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38025955

RESUMO

Mercury concentrations and yields in the Yukon River are the highest of the world's six largest panarctic drainages. Permafrost thaw has been implicated as the main driver of these high values. Alternative sources include mercury released from glacial melt and erosion, atmospheric mercury pollution, or surface mining. To determine the summer source and speciation of mercury across the Yukon River basin within Canada, we sampled water from 12 tributaries and the mainstem during July 2021. The total (unfiltered) mercury concentration in the glacier-fed White River was 57 ng/L, >10 times higher than all other sampled tributaries. The White River's high total mercury concentrations were driven by suspended sediment and persisted ∼300 km downstream of glacierized headwaters. Total mercury concentrations were lowest (typically <2 ng/L) in tributaries downstream of still-water landscape features (e.g., lakes and settling ponds), suggesting these features are effective sinks for sediment-bound mercury. Low total mercury concentrations (∼2 ng/L) were also observed in five tributaries across diverse thawing permafrost landscapes. These results suggest that glacial erosion and meltwater transport, not permafrost, drive enhanced exports of mercury with suspended sediment. Mercury exports may decline as glacial watersheds pass peak water. Other factors, including mercury released from permafrost thaw, are minor components at present.

2.
Environ Sci Technol ; 57(12): 4701-4719, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36912874

RESUMO

High-frequency water quality measurements in streams and rivers have expanded in scope and sophistication during the last two decades. Existing technology allows in situ automated measurements of water quality constituents, including both solutes and particulates, at unprecedented frequencies from seconds to subdaily sampling intervals. This detailed chemical information can be combined with measurements of hydrological and biogeochemical processes, bringing new insights into the sources, transport pathways, and transformation processes of solutes and particulates in complex catchments and along the aquatic continuum. Here, we summarize established and emerging high-frequency water quality technologies, outline key high-frequency hydrochemical data sets, and review scientific advances in key focus areas enabled by the rapid development of high-frequency water quality measurements in streams and rivers. Finally, we discuss future directions and challenges for using high-frequency water quality measurements to bridge scientific and management gaps by promoting a holistic understanding of freshwater systems and catchment status, health, and function.


Assuntos
Hidrobiologia , Qualidade da Água , Rios , Previsões , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...