Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 41(8): 989-97, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12875873

RESUMO

Two almost identical proteins with 70 amino acid residues each, closely packed by four disufide bridges, and molecular masses of 7899.5 and 7884.7 were isolated and sequenced from the venom of the scorpion Isometrus vittatus from Pakistan. They differ by an acidic amino acid residue (glutamic or aspartic) at the same position 55 of the peptide chain, however, they exhibit the same length, the same charge and are undistinguishable when separated by C(18) reverse phase HPLC. The mixture of the two proteins called IsomTx1 depolarizes the cockroach isolated axon; artificial repolarization is followed by sustained repetitive activity, artificial hyperpolarization facilitates bursting activity observed as an answer to rapid depolarization to -60 mV. The depolarization is antagonized by TTX. In voltage-clamp experiments IsomTx1 increases axonal sodium permeability which has a particular importance between resting and threshold potentials and moderately slows down the fast inactivation. These characteristics closely resemble those of other anti-insect scorpion toxins classified as contractive toxins from Androctonus and Buthotus venoms.


Assuntos
Eletrofisiologia/métodos , Venenos de Escorpião/toxicidade , Escorpiões/química , Sequência de Aminoácidos , Animais , Axônios/efeitos dos fármacos , Baratas/efeitos dos fármacos , Modelos Biológicos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Isoformas de Proteínas/química , Isoformas de Proteínas/toxicidade , Venenos de Escorpião/química , Homologia de Sequência de Aminoácidos
2.
J Insect Physiol ; 48(1): 53-61, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12770132

RESUMO

Tx4(6-1) a neurotoxic peptide from the venom of the aggressive South American 'armed' spider Phoneutria nigriventer, has been previously isolated and sequenced. It shows no detectable activity in mice but affects the peripheral nervous system of insects by stimulating glutamate release at the neuromuscular junction. Here we investigate possible interactions of the toxin with voltage-activated sodium channels (Na(v)). We confirm that it is ineffective on mammalian Na(v) channels, and establish that it competes with the alpha-like toxin 125I-Bom IV, for binding on the site 3 of insect Na(v) channel (IC(50) value around 25nM). The physiological consequences of this binding to the insect Na(v) channel are shown by electrophysiology: Tx4(6-1) prolongs evoked axonal action potentials (APs) (<500&mgr;s duration in control). Prolonged 8-10ms or 'plateau' 500-800ms APs accompanied by repetitive firing at 80-150Hz are recorded after 4-8min of toxin action. This modification of evoked activity is due to a slowing down of sodium current inactivation. Effects of Tx4(6-1) on sodium current are compared with those of a typical scorpion alpha-toxin and of some other spider toxins active on insect Na(v) channels. At the end of long voltage pulses, the maintained inward sodium current may represent 50% of the peak current after scorpion alpha-toxin but only about 8-10% after spider toxins. To understand the slight differences in the effects of alpha-scorpion and spider toxins on the insect Na(v) channel, structural studies of toxin-channels interactions would be necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA