Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712254

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

2.
J Clin Invest ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713535

RESUMO

Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.

3.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38688280

RESUMO

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Assuntos
Neoplasias Hematológicas , Mutação , Fosfoproteínas , Fatores de Processamento de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Humanos , Animais , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/metabolismo , Camundongos , Splicing de RNA , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Hematopoese/genética , Células HEK293 , Íntrons , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Nat Cancer ; 4(12): 1675-1692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872381

RESUMO

Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes. Anti-U5 snRNP200 antibodies engaging activating Fcγ receptors were efficacious across immunocompetent AML models and were augmented by combination with azacitidine. These data provide a roadmap of AML-associated antigens with Fc receptor distribution in AML and highlight the potential for targeting the AML cell surface using Fc-optimized therapeutics.


Assuntos
Leucemia Mieloide Aguda , Receptores de IgG , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Superfície , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Ribonucleoproteínas Nucleares Pequenas , Microambiente Tumoral
5.
Cell Stem Cell ; 30(9): 1262-1281.e8, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37582363

RESUMO

RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.


Assuntos
Síndromes Mielodisplásicas , Sítios de Splice de RNA , Humanos , Multiômica , Splicing de RNA/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Mutação/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
6.
Cancer Cell ; 41(1): 164-180.e8, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563682

RESUMO

Therapy resistance is a major challenge in the treatment of cancer. Here, we performed CRISPR-Cas9 screens across a broad range of therapies used in acute myeloid leukemia to identify genomic determinants of drug response. Our screens uncover a selective dependency on RNA splicing factors whose loss preferentially enhances response to the BCL2 inhibitor venetoclax. Loss of the splicing factor RBM10 augments response to venetoclax in leukemia yet is completely dispensable for normal hematopoiesis. Combined RBM10 and BCL2 inhibition leads to mis-splicing and inactivation of the inhibitor of apoptosis XIAP and downregulation of BCL2A1, an anti-apoptotic protein implicated in venetoclax resistance. Inhibition of splicing kinase families CLKs (CDC-like kinases) and DYRKs (dual-specificity tyrosine-regulated kinases) leads to aberrant splicing of key splicing and apoptotic factors that synergize with venetoclax, and overcomes resistance to BCL2 inhibition. Our findings underscore the importance of splicing in modulating response to therapies and provide a strategy to improve venetoclax-based treatments.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Splicing de RNA/genética , Leucemia Mieloide Aguda/genética , Proteínas Tirosina Quinases , Apoptose/genética , Proteínas de Ligação a RNA/genética
7.
Cancer Discov ; 12(10): 2434-2453, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35904492

RESUMO

Recently, screens for mediators of resistance to FLT3 and ABL kinase inhibitors in leukemia resulted in the discovery of LZTR1 as an adapter of a Cullin-3 RING E3 ubiquitin ligase complex responsible for the degradation of RAS GTPases. In parallel, dysregulated LZTR1 expression via aberrant splicing and mutations was identified in clonal hematopoietic conditions. Here we identify that loss of LZTR1, or leukemia-associated mutants in the LZTR1 substrate and RAS GTPase RIT1 that escape degradation, drives hematopoietic stem cell (HSC) expansion and leukemia in vivo. Although RIT1 stabilization was sufficient to drive hematopoietic transformation, transformation mediated by LZTR1 loss required MRAS. Proteolysis targeting chimeras (PROTAC) against RAS or reduction of GTP-loaded RAS overcomes LZTR1 loss-mediated resistance to FLT3 inhibitors. These data reveal proteolysis of noncanonical RAS proteins as novel regulators of HSC self-renewal, define the function of RIT1 and LZTR1 mutations in leukemia, and identify means to overcome drug resistance due to LZTR1 downregulation. SIGNIFICANCE: Here we identify that impairing proteolysis of the noncanonical RAS GTPases RIT1 and MRAS via LZTR1 downregulation or leukemia-associated mutations stabilizing RIT1 enhances MAP kinase activation and drives leukemogenesis. Reducing the abundance of GTP-bound KRAS and NRAS overcomes the resistance to FLT3 kinase inhibitors associated with LZTR1 downregulation in leukemia. This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Leucemia , Proteínas ras , Proteínas Culina/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Leucemia/genética , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/genética , Proteínas ras/genética
8.
Nat Cancer ; 3(5): 536-546, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624337

RESUMO

High-throughput sequencing and functional characterization of the cancer transcriptome have uncovered cancer-specific dysregulation of RNA splicing across a variety of cancers. Alterations in the cancer genome and dysregulation of RNA splicing factors lead to missplicing, splicing alteration-dependent gene expression and, in some cases, generation of novel splicing-derived proteins. Here, we review recent advances in our understanding of aberrant splicing in cancer pathogenesis and present strategies to harness cancer-specific aberrant splicing for therapeutic intent.


Assuntos
Neoplasias , Splicing de RNA , Humanos , Neoplasias/tratamento farmacológico , Splicing de RNA/genética , Fatores de Processamento de RNA/genética
9.
Nat Biotechnol ; 40(7): 1103-1113, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35241838

RESUMO

Many cancers carry recurrent, change-of-function mutations affecting RNA splicing factors. Here, we describe a method to harness this abnormal splicing activity to drive splicing factor mutation-dependent gene expression to selectively eliminate tumor cells. We engineered synthetic introns that were efficiently spliced in cancer cells bearing SF3B1 mutations, but unspliced in otherwise isogenic wild-type cells, to yield mutation-dependent protein production. A massively parallel screen of 8,878 introns delineated ideal intronic size and mapped elements underlying mutation-dependent splicing. Synthetic introns enabled mutation-dependent expression of herpes simplex virus-thymidine kinase (HSV-TK) and subsequent ganciclovir (GCV)-mediated killing of SF3B1-mutant leukemia, breast cancer, uveal melanoma and pancreatic cancer cells in vitro, while leaving wild-type cells unaffected. Delivery of synthetic intron-containing HSV-TK constructs to leukemia, breast cancer and uveal melanoma cells and GCV treatment in vivo significantly suppressed the growth of these otherwise lethal xenografts and improved mouse host survival. Synthetic introns provide a means to exploit tumor-specific changes in RNA splicing for cancer gene therapy.


Assuntos
Neoplasias da Mama , Leucemia , Melanoma , Animais , Antivirais , Neoplasias da Mama/genética , Feminino , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Terapia Genética/métodos , Humanos , Íntrons/genética , Leucemia/genética , Melanoma/genética , Melanoma/terapia , Camundongos , Mutação/genética , Fatores de Processamento de RNA/genética , Timidina Quinase/genética , Timidina Quinase/metabolismo , Neoplasias Uveais
10.
J Exp Med ; 214(3): 753-771, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28232469

RESUMO

Despite the identification of several oncogenic driver mutations leading to constitutive JAK-STAT activation, the cellular and molecular biology of myeloproliferative neoplasms (MPN) remains incompletely understood. Recent discoveries have identified underlying disease-modifying molecular aberrations contributing to disease initiation and progression. Here, we report that deletion of Nol3 (Nucleolar protein 3) in mice leads to an MPN resembling primary myelofibrosis (PMF). Nol3-/- MPN mice harbor an expanded Thy1+LSK stem cell population exhibiting increased cell cycling and a myelomonocytic differentiation bias. Molecularly, this phenotype is mediated by Nol3-/--induced JAK-STAT activation and downstream activation of cyclin-dependent kinase 6 (Cdk6) and MycNol3-/- MPN Thy1+LSK cells share significant molecular similarities with primary CD34+ cells from PMF patients. NOL3 levels are decreased in CD34+ cells from PMF patients, and the NOL3 locus is deleted in a subset of patients with myeloid malignancies. Our results reveal a novel genetic PMF-like mouse model and identify a tumor suppressor role for NOL3 in the pathogenesis of myeloid malignancies.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas Musculares/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Hematopoese Extramedular/fisiologia , Humanos , Janus Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Mielofibrose Primária/etiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais
11.
Cancer Discov ; 6(4): 344-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27045016

RESUMO

Elf and colleagues used an elegant series of functional and biochemical assays to investigate the molecular mechanism of mutant calreticulin (CALR)-driven cellular transformation in myeloproliferative neoplasms (MPN). Mutant CALR is sufficient to induce MPN in mouse transplantation experiments, and transformation is dependent upon physical interaction mediated by the positive electrostatic charge of the mutant CALR C-terminal domain and the thrombopoietin receptor MPL.


Assuntos
Janus Quinase 2 , Mutação , Animais , Transformação Celular Neoplásica , Transtornos Mieloproliferativos
12.
Blood ; 127(12): 1525-6, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27013212

RESUMO

In this issue of Blood, Schulze et al use a tetracycline-inducible Dnmt3b knock-in mouse model to investigate how DNMT3B-mediated DNA methylation affects leukemogenesis. Increased DNMT3B expression prolonged survival in retrovirally induced Myc-Bcl2­ or MLL-AF9­driven leukemia, and acute myeloid leukemia (AML) patients with high expression of DNMT3B target genes showed inferior overall survival.


Assuntos
Carcinogênese/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Animais , Humanos
13.
Blood ; 126(9): 1118-27, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26170031

RESUMO

Poor clinical outcome of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) has been attributed to failure of current chemotherapeutic regimens to target leukemic stem cells. We recently identified p21-activated kinase (PAK1) as a downstream effector molecule of H2.0-like homeobox (HLX), a gene functionally relevant for AML pathogenesis. In this study, we find that inhibition of PAK1 activity by small molecule inhibitors or by RNA interference leads to profound leukemia inhibitory effects both in vitro and in vivo. Inhibition of PAK1 induces differentiation and apoptosis of AML cells through downregulation of the MYC oncogene and a core network of MYC target genes. Importantly, we find that inhibition of PAK1 inhibits primary human leukemic cells including immature leukemic stem cell-enriched populations. Moreover, we find that PAK1 upregulation occurs during disease progression and is relevant for patient survival in MDS. Our studies highlight PAK1 as a novel target in AML and MDS and support the use of PAK1 inhibitors as a therapeutic strategy in these diseases.


Assuntos
Leucemia Mieloide Aguda/terapia , Síndromes Mielodisplásicas/terapia , Inibidores de Proteínas Quinases/uso terapêutico , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/genética , Animais , Apoptose , Linhagem Celular Tumoral , Genes myc , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Terapia de Alvo Molecular , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Interferência de RNA , Terapêutica com RNAi , Quinases Ativadas por p21/metabolismo
14.
Nat Immunol ; 14(5): 437-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563689

RESUMO

How hematopoietic stem cells (HSCs) coordinate the regulation of opposing cellular mechanisms such as self-renewal and differentiation commitment remains unclear. Here we identified the transcription factor and chromatin remodeler Satb1 as a critical regulator of HSC fate. HSCs lacking Satb1 had defective self-renewal, were less quiescent and showed accelerated lineage commitment, which resulted in progressive depletion of functional HSCs. The enhanced commitment was caused by less symmetric self-renewal and more symmetric differentiation divisions of Satb1-deficient HSCs. Satb1 simultaneously repressed sets of genes encoding molecules involved in HSC activation and cellular polarity, including Numb and Myc, which encode two key factors for the specification of stem-cell fate. Thus, Satb1 is a regulator that promotes HSC quiescence and represses lineage commitment.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Sobrevivência Celular/genética , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
15.
Blood ; 120(6): 1290-8, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22723552

RESUMO

Cellular and interpatient heterogeneity and the involvement of different stem and progenitor compartments in leukemogenesis are challenges for the identification of common pathways contributing to the initiation and maintenance of acute myeloid leukemia (AML). Here we used a strategy of parallel transcriptional analysis of phenotypic long-term hematopoietic stem cells (HSCs), short-term HSCs, and granulocyte-monocyte progenitors from individuals with high-risk (-7/7q-) AML and compared them with the corresponding cell populations from healthy controls. This analysis revealed dysregulated expression of 11 genes, including IL-1 receptor accessory protein (IL1RAP), in all leukemic stem and progenitor cell compartments. IL1RAP protein was found to be overexpressed on the surface of HSCs of AML patients, and marked cells with the -7/7q- anomaly. IL1RAP was also overexpressed on HSCs of patients with normal karyotype AML and high-risk myelodysplastic syndrome, suggesting a pervasive role in different disease subtypes. High IL1RAP expression was independently associated with poor overall survival in 3 independent cohorts of AML patients (P = 2.2 × 10(-7)). Knockdown of IL1RAP decreased clonogenicity and increased cell death of AML cells. Our study identified genes dysregulated in stem and progenitor cells in -7/7q- AML, and suggests that IL1RAP may be a promising therapeutic and prognostic target in AML and high-risk myelodysplastic syndrome.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Células-Tronco Neoplásicas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/fisiologia , Estudos de Coortes , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HL-60 , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Proteína Acessória do Receptor de Interleucina-1/fisiologia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Modelos Biológicos , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/mortalidade , Células-Tronco Neoplásicas/patologia , Prognóstico , Análise de Sobrevida , Células Tumorais Cultivadas , Regulação para Cima/genética
16.
Genetics ; 181(1): 129-37, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015537

RESUMO

[URE3] is a prion of the yeast Ure2 protein. Hsp40 is a cochaperone that regulates Hsp70 chaperone activity. When overexpressed, the Hsp40 Ydj1p cures yeast of [URE3], but the Hsp40 Sis1p does not. On the basis of biochemical data Ydj1p has been proposed to cure [URE3] by binding soluble Ure2p and preventing it from joining prion aggregates. Here, we mutagenized Ydj1p and find that disrupting substrate binding, dimerization, membrane association, or ability to transfer substrate to Hsp70 had little or no effect on curing. J-domain point mutations that disrupt functional interactions of Ydj1p with Hsp70 abolished curing, and the J domain alone cured [URE3]. Consistent with heterologous J domains possessing similar Hsp70 regulatory activity, the Sis1p J domain also cured [URE3]. We further show that Ydj1p is not essential for [URE3] propagation and that depletion of Ure2p is lethal in cells lacking Ydj1p. Our data imply that curing of [URE3] by overproduced Ydj1p does not involve direct interaction of Ydj1p with Ure2p but rather works through regulation of Hsp70 through a specific J-protein/Hsp70 interaction.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glutationa Peroxidase , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Viabilidade Microbiana , Proteínas Mutantes/metabolismo , Mutação/genética , Prenilação , Multimerização Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...