Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 35(9): e9064, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33554384

RESUMO

RATIONALE: Gas chromatographic analyses for vegetable oils require transesterification, which generally involves multiple steps, mainly to generate fatty acid methyl esters (FAMEs). A quick method based on acid-catalyzed transesterification using 2,2-dimethoxypropane (DMP) enables the conversion in one step, in a single reactor. For compound-specific stable carbon and hydrogen isotope analyses (C- and H-CSIA) of individual fatty acids (FAs) in oil, the verification of this one-step method has not yet been reported. METHODS: In this study, we evaluated the feasibility of the one-step method for C- and H-CSIA of individual FAMEs in rapeseed samples. The focus was on the investigation of the influence of methanol, which was produced from the reactions of DMP with glycerol and water during transesterification, on the accuracy of isotope composition of FAMEs, consequently of the FAs. The reproducibility of the one-step method was assessed by the measurement of the FAMEs from rapeseed and rapeseed oil. For the C- and H-CSIA of individual FAMEs, a gas chromatography combustion/pyrolysis isotope ratio mass spectrometry system was used. RESULTS: Our results showed that no significant differences arise in the carbon and hydrogen isotope compositions of the selected main FAMEs produced with and without DMP except for the H-CSIA value of C18:3. The reproducibility of the one-step method for rapeseed was in the range of ±0.1 mUr to ± 0.3 mUr for C-CSIA and ±1 mUr to ±3 mUr for H-CSIA of the main FAMEs. CONCLUSIONS: DMP improves the transesterification efficiency without influencing the accuracy of the C- and H-CSIA of FAMEs. The performance of the one-step method for rapeseed samples for the determination of C- and H-CSIA values of FAMEs is satisfactory. Thus, the applicability of the one-step method for isotopic fingerprint analyses of FAs in oilseeds is reported for the first time.


Assuntos
Brassica napus/química , Isótopos de Carbono/análise , Deutério/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Propanóis/química , Óleo de Brassica napus/química , Esterificação , Ácidos Graxos/química , Metilação , Pirólise , Reprodutibilidade dos Testes
2.
Waste Manag ; 120: 503-512, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129653

RESUMO

A large quantity of leachate is generated during municipal solid waste collection operation and in landfills due to the large amount of organic waste and high humidity. The content of medium chain fatty acids (MCFAs) in the leachate is a low cost feedstock for bio-based chemical and fuel production processes. The aim of this study is to investigate the MCFA production potential of three leachate ages through chain elongation process under uncontrolled pH batch test. Moreover, the effect of using different external electron donors (ethanol, methanol and a mixture of both) is studied. The experiment consists of characterizing the samples then adding external electron donors with a specific ratio to leachate samples under mesophilic temperature. For this investigation, also a statistical analysis is done, which shows the production of MCFAs is highly influenced by leachate age. The results indicate that the production of even-numbered acids increase from 600 to 1,000 mg/L by the end of the ethanol chain elongation experiment for young leachate. However, a higher MCFA production of more than 1,000 mg/L is achieved by using the mixture of methanol and ethanol as electron donor. Furthermore, all methanol chain elongation experiments lead to an odd-numbered production of MCFAs, such as pentanoic and heptanoic acids. These results confirm the potential improvement of MCFA production from leachate through choosing the optimal leachate age and electron donor. Overall, producing MCFAs from leachate is a good example of circular bio-economy because waste is used to produce biochemicals, which closes the material cycle.


Assuntos
Elétrons , Resíduos Sólidos , Ácidos Graxos , Fermentação , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...