Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928639

RESUMO

The field of computed tomography (CT), which is a basic diagnostic tool in clinical practice, has recently undergone rapid technological advances. These include the evolution of dual-energy CT (DECT) and development of photon-counting computed tomography (PCCT). DECT enables the acquisition of CT images at two different energy spectra, which allows for the differentiation of certain materials, mainly calcium and iodine. PCCT is a recent technology that enables a scanner to quantify the energy of each photon gathered by the detector. This method gives the possibility to decrease the radiation dose and increase the spatial and temporal resolutions of scans. Both of these techniques have found a wide range of applications in radiology, including vascular studies. In this narrative review, the authors present the principles of DECT and PCCT, outline their advantages and drawbacks, and briefly discuss the application of these methods in vascular radiology.

2.
J Clin Med ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36614902

RESUMO

Peripheral arteriovenous malformations (PVMs) can be classified into high-flow malformations (HFVMs) and low-flow malformations (LFVMs). Adequate distinguishment is crucial for therapeutic decision and can be done using dynamic contrast-enhanced MRI (DCE-MRI). The main aim of this retrospective study was to determine the diagnostic value of quantitative DCE-MRI ratios for differentiation between HFVM and LFVM, their optimal cut-off points, and predictive values. DCE-MRI time-resolved angiography with stochastic trajectory (TWIST) examinations of 90 patients with PVMs were included [28 HFVM (31%), 62 LFVM (69%)]. The measurements of artery-lesion time, maximum lesion enhancement, slope of the enhancement curve, and maximum percentage increase of signal intensity (SI) were obtained. The optimal cut-offs for HFVMs calculated using the Youden index were: for slope of enhancement curve < 8.7 s (sensitivity of 86%, specificity of 89%), artery-lesion time ≤ 5.6 s (sensitivity of 89%, specificity of 77%), time to maximum enhancement ≤ 30 s (sensitivity of 94%, specificity of 100%), and maximum percentage enhancement of the lesion > 662% (sensitivity of 68%, specificity of 69%). To summarize, DCE-MRI is very valuable for differentiation between HFVM and LFVM, especially if quantitative measurements are done.

3.
Pol J Radiol ; 86: e692-e699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059062

RESUMO

Chest computed tomography (CT) is proven to have high sensitivity in COVID-19 diagnosis. It is available in most emergency wards, and in contrast to polymerase chain reaction (PCR) it can be obtained in several minutes. However, its imaging features change during the course of the disease and overlap with other viral pneumonias, including influenza pneumonia. In this brief analysis we review the recent literature about chest CT features, useful radiological scales, and COVID-19 differentiation with other viral infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...