Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912870

RESUMO

Two hydrogen-bonded crosslinked organic frameworks (HCOFs) were synthesized via free radical reactions utilizing butadiene and isoprene as crosslinkers. These HCOFs exhibit high crystallinity, enabling detailed structural characterization via single-crystal X-ray diffraction analysis. Subsequently, one of the olefin-rich HCOFs was converted to a hydroxylated framework through hydroboration-oxidation while maintaining the high crystallinity.

2.
J Am Chem Soc ; 146(22): 15525-15537, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779810

RESUMO

Porous organic materials showcasing large framework dynamics present new paths for adsorption and separation with enhanced capacity and selectivity beyond the size-sieving limits, which is attributed to their guest-responsive sorption behaviors. Porous hydrogen-bonded crosslinked organic frameworks (HCOFs) are attractive for their remarkable ability to undergo guest-triggered expansion and contraction facilitated by their flexible covalent crosslinkages. However, the voids of HCOFs remain limited, which restrains the extent of the framework dynamics. In this work, we synthesized a series of HCOFs characterized by unprecedented size expansion capabilities induced by solvents. These HCOFs were constructed by isoreticularly co-crystallizing two complementary sets of hydrogen bonding building blocks to generate porous molecular crystals, which were crosslinked through thiol-ene/yne single-crystal-to-single-crystal transformations. The generated HCOFs exhibit enhanced chemical durability, high crystallinity, and extraordinary framework dynamics. For instance, HCOF-104 crystals featuring a pore diameter of 13.6 Å expanded in DMF to 300 ± 10% of their original lengths within just 1 min. This expansion allows the HCOFs to adsorb guest molecules that are significantly larger than the pore sizes of their crystalline states. Through methanol-induced contraction, these large guests were encapsulated in the fast-contracted HCOFs. These advancements in porous framework dynamics pave the way for new methods of encapsulating guests for targeted delivery.

3.
Dalton Trans ; 53(16): 7100-7104, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38567572

RESUMO

A scalable synthesis of azidomethyl bisoxadiazol linked-1,2,3-triazole-(ABT) based potential liquid propellant and energetic plasticizer is obtained from commercially available diaminomaleonitrile in excellent yield. Newly synthesized compounds were fully characterized by various spectroscopic techniques. These materials exhibit good densities (1.77 g cm-3) and high thermal stabilities (Td = 181 °C). Compound 5 has good detonation properties (5, P = 20.81 GPa, D = 7516 ms-1) and propulsive properties (Isp (neat) = 210 s). These are superior to TNT and GAP and comparable to BAMOD, making them potential green liquid rocket propellants and energetic plasticizers.

4.
Angew Chem Int Ed Engl ; 63(12): e202318876, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38267370

RESUMO

This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.

5.
Dalton Trans ; 53(3): 903-907, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38170466

RESUMO

Nitroimino (R = N-NO2) energetic material is a unique class of high energy density materials (HEDM). Synthesis and characterization of insensitive nitroimino compounds are a major challenge. Here triazole-based nitroimino compounds and their high-nitrogen green energetic salts in excellent yields are described. These materials exhibit high positive heats of formation (7.84 to 735.29 kJ mol-1), good densities (1.66 to 1.98 g cm-3), suitable detonation properties (P = 22.02 to 31.88 GPa; D = 7472 to 8936 ms-1) and high ballistic properties (Isp 205.66 to 295.35 s; C* = 1065 to 1832 ms-1) with good thermal (Td = 136-378 °C) and mechanical stabilities (IS = 10-40 J and FS = 120-360 N).

6.
Sci Adv ; 9(46): eadk3754, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967187

RESUMO

Nitro groups have played a central and decisive role in the development of the most powerful known energetic materials. Highly nitrated compounds are potential oxidizing agents, which could replace the environmentally hazardous used materials such as ammonium perchlorate. The scarcity of azole compounds with a large number of nitro groups is likely due to their inherent thermal instability and the limited number of ring sites available for bond formation. Now, the formation of the first azole molecule bonded to seven nitro groups, 4-nitro-3,5-bis(trinitromethyl)-1H-pyrazole (4), by the stepwise nitration of 3,5-dimethyl-1H-pyrazole is reported. Compound 4 exhibits exceptional physicochemical properties with a positive oxygen balance (OBCO2 = 13.62%) and an extremely high calculated density (2.04 g cm-3 at 100 K). This is impressively high for a C, H, N, O compound. This work is a giant step forward to highly nitrated and dense azoles and will accelerate further exploration in this challenging field.

7.
Angew Chem Int Ed Engl ; 62(50): e202311601, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870901

RESUMO

Boron trifluoride (BF3 ) is a highly corrosive gas widely used in industry. Confining BF3 in porous materials ensures safe and convenient handling and prevents its degradation. Hence, it is highly desired to develop porous materials with high adsorption capacity, high stability, and resistance to BF3 corrosion. Herein, we designed and synthesized a Lewis basic single-crystalline hydrogen-bond crosslinked organic framework (HC OF-50) for BF3 storage and its application in catalysis. Specifically, we introduced self-complementary ortho-alkoxy-benzamide hydrogen-bonding moieties to direct the formation of highly organized hydrogen-bonded networks, which were subsequently photo-crosslinked to generate HC OFs. The HC OF-50 features Lewis basic thioether linkages and electron-rich pore surfaces for BF3 uptake. As a result, HC OF-50 shows a record-high 14.2 mmol/g BF3 uptake capacity. The BF3 uptake in HC OF-50 is reversible, leading to the slow release of BF3 . We leveraged this property to reduce the undesirable chain transfer and termination in the cationic polymerization of vinyl ethers. Polymers with higher molecular weights and lower polydispersity were generated compared to those synthesized using BF3 ⋅ Et2 O. The elucidation of the structure-property relationship, as provided by the single-crystal X-ray structures, combined with the high BF3 uptake capacity and controlled sorption, highlights the molecular understanding of framework-guest interactions in addressing contemporary challenges.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 9): 800-803, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693663

RESUMO

The title compound, C8H18NO2 +·Br-·C8H17NO2, crystallizes as the bromide salt of a 50:50 mixture of (tri-ethyl-azaniumyl)-carb-oxy-lic acid and the zwitterionic (tri-ethyl-azaniumyl)-carboxyl-ate. The two organic entities are linked by a half-occupied bridging carb-oxy-lic acid hydrogen atom that is hydrogen-bonded to the carboxyl-ate group of the second mol-ecule. The tetra-lkyl-ammonium group adopts a nearly perfect tetra-hedral shape around the nitro-gen atom with bond lengths that agree with known values. The carb-oxy-lic acid/carboxyl-ate group is oriented anti to one of the ethyl groups on the ammonium group, and the carbonyl oxygen atom is engaged in intra-molecular C-H⋯O hydrogen bonds.

9.
Chem Commun (Camb) ; 59(75): 11276-11279, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37664998

RESUMO

Little is known about trinitromethyl nitrotriazole (TNMNT) since the crystal structure, density, energetic performance, and thermal properties have not been determined. A detailed characterization of TNMNT and its hydrazinium and potassium salts and their potential as solid propellants and oxidizers has been established. TNMNT exhibits a high density (1.96 g cm-3) and positive enthalpy of formation (ΔHf = +84.79 kJ mol-1). TNMNT and its hydrazinium and potassium salts illustrate excellent detonation properties (P = 34.24 to 36.22 GPa, D = 8899 to 9031 ms-1). TNMNT and its hydrazinium salt exhibit outstanding propulsive properties (Isp = 247.28 to 271.19 s), and these are superior to AP (Isp = 156.63 s) and ADN (Isp = 202.14 s). The results suggest opening the door to utilizing TNMNT and its energetic salts in solid rocket propulsion.

10.
J Am Chem Soc ; 145(40): 21723-21728, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37769032

RESUMO

Perchlorate anions used in industry are harmful pollutants in groundwater. Therefore, selectively binding perchlorate provides solutions for environmental remediation. Here, we synthesized a series of tripodal organic cages with highly preorganized Csp3-H bonds that exhibit selectively binding to perchlorate in organic solvents and water. These cages demonstrated binding affinities to perchlorate of 105-106 M-1 at room temperature, along with high selectivity over competing anions, such as iodide and nitrate. Through single crystal structure analysis and density functional theory calculations, we identified unconventional Csp3-H···O interactions as the primary driving force for perchlorate binding. Additionally, we successfully incorporated this cage into a 3D-printable polymer network, showcasing its efficacy in removing perchlorate from water.

11.
Nat Chem ; 15(10): 1365-1373, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37580445

RESUMO

Grid-scale energy storage applications, such as redox flow batteries, rely on the solubility of redox-active organic molecules. Although redox-active pyridiniums exhibit exceptional persistence in multiple redox states at low potentials (desirable properties for energy storage applications), their solubility in non-aqueous media remains low, and few practical molecular design strategies exist to improve solubility. Here we convey the extent to which discrete, attractive interactions between C-H groups and π electrons of an aromatic ring (C-H···π interactions) can describe the solubility of N-substituted pyridinium salts in a non-aqueous solvent. We find a direct correlation between the number of C-H···π interactions for each pyridinium salt and its solubility in acetonitrile. The correlation presented in this work highlights a consequence of disrupting strong electrostatic interactions with weak dispersion interactions, showing how minimal structural change can dramatically impact pyridinium solubility.

12.
Dalton Trans ; 52(35): 12341-12346, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37591822

RESUMO

A scalable synthesis of 5-(trinitromethyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (TNMTO) is possible from commercially available 2-methylpyrimidine-4,6-diol. It exhibits high density (1.90 g cm-3) with comparably low thermal stability (Td = 80 °C) and positive oxygen balance (OBco = 20.51%, OBCO2 = 0.0%). TNMTO has an attractive combination of detonation properties (P = 35.01 GPa, D = 8997 ms-1) and propulsive properties (Isp(neat) = 251.85 s, ρIsp(neat) = 478.52 gs cm-3, ). These are superior to ammonium dinitroamide (ADN), 2,2,2-tetranitroacetimidic acid (TNAA) and ammonium perchlorate (AP), making it a potential green oxidizer in solid rocket propulsion.

13.
Org Lett ; 25(32): 6082-6086, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37556303

RESUMO

Hydrogen bonds (H-bonds) in energetic compounds have a very pronounced effect on physicochemical properties such as density, thermal stability, sensitivity, and solubility. Now a strategy to synthesize nitrogen-rich energetic materials with overall good properties, which stem from the synergetic effects of inter- or intramolecular H-bonds, is reported. 1,2-Dihydrazono-1,2-di(1H-tetrazol-5-5-yl)ethane (4), a new thermostable and insensitive material, is obtained from the reaction of dioxime (2) with hydrazine hydrate. The exchange of the oxime (NOH) with the hydrazone (NNH2) functionality results in the reduced acidic character and low solubility in water, which make it remarkably suitable for practical use. While the detonation velocity of 4 is comparable with RDX, it has an advantage of high nitrogen content (76%) and high thermal stability (275 °C) and is insensitive toward external stimuli.

14.
Org Lett ; 25(27): 5100-5104, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37409774

RESUMO

A straightforward synthetic strategy for newly designed nitrogen-rich planar explosives and solid propellants is reported. These materials exhibit high densities (1.69-1.95 g cm-3), high positive enthalpies of formation (approaching 1149.21 kJ mol-1), promising energetic properties (P = 26.36-33.78 GPa, D = 8258-9518 m s-1), acceptable thermal stabilities (Td = 132-277 °C), good sensitivities (IS = 4-40 J, FS = 60-360 N) and excellent propulsive performance (Isp = 176.80-253.06 s).


Assuntos
Substâncias Explosivas , Nitrogênio , Tetrazóis
15.
J Am Chem Soc ; 145(22): 12007-12012, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224264

RESUMO

Reduction of nitrate is an essential, yet challenging chemical task required to manage this relatively inert oxoanion in the environment and biology. We show that thiols, ubiquitous reductants in biology, convert nitrate to nitric oxide at a Cu(II) center under mild conditions. The ß-diketiminato complex [Cl2NNF6]Cu(κ2-O2NO) engages in O-atom transfer with various thiols (RSH) to form the corresponding copper(II) nitrite [CuII](κ2-O2N) and sulfenic acid (RSOH). The copper(II) nitrite further reacts with RSH to give S-nitrosothiols RSNO and [CuII]2(µ-OH)2 en route to NO formation via [CuII]-SR intermediates. The gasotransmitter H2S also reduces nitrate at copper(II) to generate NO, providing a lens into NO3-/H2S crosstalk. The interaction of thiols with nitrate at copper(II) releases a cascade of N- and S-based signaling molecules in biology.

16.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 4): 246-253, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057016

RESUMO

This paper compares variations on a structure model derived from an X-ray diffraction data set from a solid solution of chalcogenide derivatives of cis-1,2-bis-(di-phenyl-phosphan-yl)ethyl-ene, namely, 1,2-(ethene-1,2-di-yl)bis-(di-phenyl-phoshpine sulfide/selenide), C26H22P2S1.13Se0.87. A sequence of processes are presented to ascertain the composition of the crystal, along with strategies for which aspects of the model to inspect to ensure a chemically and crystallographically realistic structure. Criteria include mis-matches between F obs 2 and F calc 2, plots of |F obs| vs |F calc|, residual electron density, checkCIF alerts, pitfalls of the OMIT command used to suppress ill-fitting data, comparative size of displacement ellipsoids, and critical inspection of inter-atomic distances. Since the structure is quite small, solves easily, and presents a number of readily expressible refinement concepts, we feel that it would make a straightforward and concise instructional piece for students learning how to determine if their model provides the best fit for the data and show students how to critically assess their structures.

17.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 4): 345-348, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057017

RESUMO

The mol-ecular structure of tert-butyl 3,6-di-iodo-carbazole-9-carboxyl-ate, C17H15I2NO2, features a nearly planar 13-membered carbazole ring with C-I bond lengths of 2.092 (4) and 2.104 (4) Å. The carbamate group has key bond lengths of 1.404 (6) Š(N-C), 1.330 (5) Š(O-C), and 1.201 (6) Š(C=O). The crystal contains inter-molecular π-π inter-actions, as well as both type I and type II inter-molecular I⋯I inter-actions.

18.
Dalton Trans ; 52(11): 3449-3457, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825979

RESUMO

A variety of phenylene-bridged isoxazole and tetrazole-1-ol based green energetic materials was synthesized, for the first time, in good to excellent yields. The structures of the newly synthesized compounds were confirmed by spectroscopic techniques, elemental analysis, and single-crystal X-ray analysis. The value of the present work is that all newly synthesized compounds have good thermal stabilities ranging between 167-340 °C and acceptable densities between 1.51 g cm-3 to 1.82 g cm-3. Detailed computational insight into the energetic properties of the new compounds shows that they have good energetic properties (propulsive and ballistic) with excellent thermal and mechanical stabilities which makes them promising candidates for solid propulsion systems. Compounds 5, 12 and 14 are the superior candidates as melt-castable energetic materials.

19.
Org Lett ; 25(9): 1481-1485, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36847214

RESUMO

In this study, a simple synthetic strategy for bridged bis(nitramide)-based N-substituted tetrazoles is described. All new compounds were isolated and fully characterized by sophisticated analytical techniques. The structures of the intermediate derivative and two final compounds were determined by single-crystal X-ray data. The structures of the intermediate derivative and two final compounds were determined by single crystal X-ray data. Thermostabilities and energetic properties of new bridged bisnitramide-based N-substituted tetrazoles were discussed and compared with known materials.

20.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 1): 28-32, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628368

RESUMO

The crystal structures of (Z)-(ethene-1,2-di-yl)bis-(di-phenyl-phosphine sulfide), C26H22P2S2 (I), along with its complex with PtII dichloride, di-chlorido[(Z)-(ethene-1,2-di-yl)bis-(di-phenyl-phosphine sulfide)-κ2 S,S']platinum(II), [PtCl2(C26H22P2S2)] (II), are described here. Compound I features P=S bond lengths of 1.9571 (15) and 1.9529 (15) Å, with a torsion angle of 166.24 (7)° between the two phosphine sulfide groups. The crystal of compound I features both intra-molecular C-H⋯S hydrogen bonds and π-π inter-actions. Mol-ecules of compound I are held together with inter-molecular π-π and C-H⋯π inter-actions to form chains that run parallel to the z-axis. The inter-molecular C-H⋯π inter-action has a H⋯Cg distance of 2.63 Å, a D⋯Cg distance of 3.573 (5) Šand a D-H⋯Cg angle of 171° (where Cg refers to the centroid of one of the phenyl rings). These chains are linked by relatively long C-H⋯S hydrogen bonds with D⋯A distances of 3.367 (4) and 3.394 (4) Šwith D-H⋯A angles of 113 and 115°. Compound II features Pt-Cl and Pt-S bond lengths of 2.3226 (19) and 2.2712 (19) Å, with a P=S bond length of 2.012 (3) Å. The PtII center adopts a square-planar geometry, with Cl-Pt-Cl and S-Pt-S bond angles of 90.34 (10) and 97.19 (10)°, respectively. Mol-ecules of compound II are linked in the crystal by inter-molecular C-H⋯Cl and C-H⋯S hydrogen bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...