Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994745

RESUMO

INTRODUCTION: In tauopathies, altered tau processing correlates with impairments in synaptic density and function. Changes in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to disease-associated abnormalities in multiple neurodegenerative diseases. METHODS: To investigate the link between tau and HCN channels, we performed histological, biochemical, ultrastructural, and functional analyses of hippocampal tissues from Alzheimer's disease (AD), age-matched controls, Tau35 mice, and/or Tau35 primary hippocampal neurons. RESULTS: Expression of specific HCN channels is elevated in post mortem AD hippocampus. Tau35 mice develop progressive abnormalities including increased phosphorylated tau, enhanced HCN channel expression, decreased dendritic branching, reduced synapse density, and vesicle clustering defects. Tau35 primary neurons show increased HCN channel expression enhanced hyperpolarization-induced membrane voltage "sag" and changes in the frequency and kinetics of spontaneous excitatory postsynaptic currents. DISCUSSION: Our findings are consistent with a model in which pathological changes in tauopathies impact HCN channels to drive network-wide structural and functional synaptic deficits. HIGHLIGHTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are functionally linked to the development of tauopathy. Expression of specific HCN channels is elevated in the hippocampus in Alzheimer's disease and the Tau35 mouse model of tauopathy. Increased expression of HCN channels in Tau35 mice is accompanied by hyperpolarization-induced membrane voltage "sag" demonstrating a detrimental effect of tau abnormalities on HCN channel function. Tau35 expression alters synaptic organization, causing a loosened vesicle clustering phenotype in Tau35 mice.

2.
Sci Adv ; 9(12): eadd3403, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961898

RESUMO

Long-term memory formation is energetically costly. Neural mechanisms that guide an animal to identify fruitful associations therefore have important survival benefits. Here, we elucidate a circuit mechanism in Lymnaea, which enables past memory to shape new memory formation through changes in perception. Specifically, strong classical conditioning drives a positive shift in perception that facilitates the robust learning of a subsequent and otherwise ineffective weak association. Circuit dissection approaches reveal the neural control network responsible, characterized by a mutual inhibition motif. This both sets perceptual state and acts as the master controller for gating new learning. Pharmacological circuit manipulation in vivo fully substitutes for strong paradigm learning, shifting the network into a more receptive state to enable subsequent weak paradigm learning. Thus, perceptual change provides a conduit to link past and future memory storage. We propose that this mechanism alerts animals to learning-rich periods, lowering the threshold for new memory acquisition.


Assuntos
Aprendizagem , Memória , Animais , Aprendizagem/fisiologia , Memória/fisiologia , Memória de Longo Prazo , Percepção
3.
Cereb Cortex ; 33(4): 1263-1276, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35368053

RESUMO

Alzheimer's disease is linked to increased levels of amyloid beta (Aß) in the brain, but the mechanisms underlying neuronal dysfunction and neurodegeneration remain enigmatic. Here, we investigate whether organizational characteristics of functional presynaptic vesicle pools, key determinants of information transmission in the central nervous system, are targets for elevated Aß. Using an optical readout method in cultured hippocampal neurons, we show that acute Aß42 treatment significantly enlarges the fraction of functional vesicles at individual terminals. We observe the same effect in a chronically elevated Aß transgenic model (APPSw,Ind) using an ultrastructure-function approach that provides detailed information on nanoscale vesicle pool positioning. Strikingly, elevated Aß is correlated with excessive accumulation of recycled vesicles near putative endocytic sites, which is consistent with deficits in vesicle retrieval pathways. Using the glutamate reporter, iGluSnFR, we show that there are parallel functional consequences, where ongoing information signaling capacity is constrained. Treatment with levetiracetam, an antiepileptic that dampens synaptic hyperactivity, partially rescues these transmission defects. Our findings implicate organizational and dynamic features of functional vesicle pools as targets in Aß-driven synaptic impairment, suggesting that interventions to relieve the overloading of vesicle retrieval pathways might have promising therapeutic value.


Assuntos
Peptídeos beta-Amiloides , Vesículas Sinápticas , Vesículas Sinápticas/fisiologia , Peptídeos beta-Amiloides/metabolismo , Terminações Pré-Sinápticas/fisiologia , Neurônios/metabolismo , Hipocampo/fisiologia , Transmissão Sináptica/fisiologia
4.
EMBO Rep ; 22(5): e51851, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33932076

RESUMO

Defects in DNA single-strand break repair (SSBR) are linked with neurological dysfunction but the underlying mechanisms remain poorly understood. Here, we show that hyperactivity of the DNA strand break sensor protein Parp1 in mice in which the central SSBR protein Xrcc1 is conditionally deleted (Xrcc1Nes-Cre ) results in lethal seizures and shortened lifespan. Using electrophysiological recording and synaptic imaging approaches, we demonstrate that aberrant Parp1 activation triggers seizure-like activity in Xrcc1-defective hippocampus ex vivo and deregulated presynaptic calcium signalling in isolated hippocampal neurons in vitro. Moreover, we show that these defects are prevented by Parp1 inhibition or deletion and, in the case of Parp1 deletion, that the lifespan of Xrcc1Nes-Cre mice is greatly extended. This is the first demonstration that lethal seizures can be triggered by aberrant Parp1 activity at unrepaired SSBs, highlighting PARP inhibition as a possible therapeutic approach in hereditary neurological disease.


Assuntos
Cálcio , Proteínas de Ligação a DNA , Animais , DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Neurônios/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Convulsões/genética
5.
Cell Rep ; 30(6): 2006-2017.e3, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049027

RESUMO

Vesicle pool properties are known determinants of synaptic efficacy, but their potential role as modifiable substrates in forms of Hebbian plasticity is still unclear. Here, we investigate this using a nanoscale readout of functionally recycled vesicles in natively wired hippocampal CA3→CA1 circuits undergoing long-term potentiation (LTP). We show that the total recycled vesicle pool is larger after plasticity induction, with the smallest terminals exhibiting the greatest relative expansion. Changes in the spatial organization of vesicles accompany potentiation including a specific increase in the number of recycled vesicles at the active zone, consistent with an ultrastructural remodeling component of synaptic strengthening. The cAMP-PKA pathway activator, forskolin, selectively mimics some features of LTP-driven changes, suggesting that distinct and independent modules of regulation accompany plasticity expression. Our findings provide evidence for a presynaptic locus of LTP encoded in the number and arrangement of functionally recycled vesicles, with relevance for models of long-term plasticity storage.


Assuntos
Nanomedicina/métodos , Plasticidade Neuronal/genética , Vesículas Sinápticas/metabolismo , Humanos
6.
Cell Mol Life Sci ; 77(23): 5031-5043, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32025743

RESUMO

Misfolding and aggregation of proteins is strongly linked to several neurodegenerative diseases, but how such species bring about their cytotoxic actions remains poorly understood. Here we used specifically-designed optical reporter probes and live fluorescence imaging in primary hippocampal neurons to characterise the mechanism by which prefibrillar, oligomeric forms of the Alzheimer's-associated peptide, Aß42, exert their detrimental effects. We used a pH-sensitive reporter, Aß42-CypHer, to track Aß internalisation in real-time, demonstrating that oligomers are rapidly taken up into cells in a dynamin-dependent manner, and trafficked via the endo-lysosomal pathway resulting in accumulation in lysosomes. In contrast, a non-assembling variant of Aß42 (vAß42) assayed in the same way is not internalised. Tracking ovalbumin uptake into cells using CypHer or Alexa Fluor tags shows that preincubation with Aß42 disrupts protein uptake. Our results identify a potential mechanism by which amyloidogenic aggregates impair cellular function through disruption of the endosomal-lysosomal pathway.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Peptídeos beta-Amiloides/toxicidade , Animais , Células Cultivadas , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Endossomos/ultraestrutura , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ovalbumina/metabolismo , Fragmentos de Peptídeos/toxicidade , Dobramento de Proteína/efeitos dos fármacos , Ratos
7.
Sci Rep ; 9(1): 19036, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836825

RESUMO

Discriminating, extracting and encoding temporal regularities is a critical requirement in the brain, relevant to sensory-motor processing and learning. However, the cellular mechanisms responsible remain enigmatic; for example, whether such abilities require specific, elaborately organized neural networks or arise from more fundamental, inherent properties of neurons. Here, using multi-electrode array technology, and focusing on interval learning, we demonstrate that sparse reconstituted rat hippocampal neural circuits are intrinsically capable of encoding and storing sub-second-order time intervals for over an hour timescale, represented in changes in the spatial-temporal architecture of firing relationships among populations of neurons. This learning is accompanied by increases in mutual information and transfer entropy, formal measures related to information storage and flow. Moreover, temporal relationships derived from previously trained circuits can act as templates for copying intervals into untrained networks, suggesting the possibility of circuit-to-circuit information transfer. Our findings illustrate that dynamic encoding and stable copying of temporal relationships are fundamental properties of simple in vitro networks, with general significance for understanding elemental principles of information processing, storage and replication.


Assuntos
Hipocampo/fisiologia , Rede Nervosa/fisiologia , Animais , Aprendizagem/fisiologia , Microeletrodos , Periodicidade , Ratos , Fatores de Tempo
8.
Sci Adv ; 4(11): eaau9180, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30474061

RESUMO

Hunger state can substantially alter the perceived value of a stimulus, even to the extent that the same sensory cue can trigger antagonistic behaviors. How the nervous system uses these graded perceptual shifts to select between opposed motor patterns remains enigmatic. Here, we challenged food-deprived and satiated Lymnaea to choose between two mutually exclusive behaviors, ingestion or egestion, produced by the same feeding central pattern generator. Decoding the underlying neural circuit reveals that the activity of central dopaminergic interneurons defines hunger state and drives network reconfiguration, biasing satiated animals toward the rejection of stimuli deemed palatable by food-deprived ones. By blocking the action of these neurons, satiated animals can be reconfigured to exhibit a hungry animal phenotype. This centralized mechanism occurs in the complete absence of sensory retuning and generalizes across different sensory modalities, allowing food-deprived animals to increase their perception of food value in a stimulus-independent manner to maximize potential calorific intake.


Assuntos
Comportamento de Escolha/fisiologia , Comportamento Alimentar/fisiologia , Privação de Alimentos/fisiologia , Fome/fisiologia , Lymnaea/fisiologia , Neurônios/fisiologia , Animais , Modelos Neurológicos , Vias Neurais
9.
Sci Adv ; 4(7): eaat1357, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29978045

RESUMO

Action potential shape is a major determinant of synaptic transmission, and mechanisms of spike tuning are therefore of key functional significance. We demonstrate that synaptic activity itself modulates future spikes in the same neuron via a rapid feedback pathway. Using Ca2+ imaging and targeted uncaging approaches in layer 5 neocortical pyramidal neurons, we show that the single spike-evoked Ca2+ rise occurring in one proximal bouton or first node of Ranvier drives a significant sharpening of subsequent action potentials recorded at the soma. This form of intrinsic modulation, mediated by the activation of large-conductance Ca2+/voltage-dependent K+ channels (BK channels), acts to maintain high-frequency firing and limit runaway spike broadening during repetitive firing, preventing an otherwise significant escalation of synaptic transmission. Our findings identify a novel short-term presynaptic plasticity mechanism that uses the activity history of a bouton or adjacent axonal site to dynamically tune ongoing signaling properties.


Assuntos
Potenciais de Ação/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Sinapses/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Potenciais Evocados/efeitos dos fármacos , Feminino , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar
10.
Nature ; 541(7635): 87-91, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002403

RESUMO

XRCC1 is a molecular scaffold protein that assembles multi-protein complexes involved in DNA single-strand break repair. Here we show that biallelic mutations in the human XRCC1 gene are associated with ocular motor apraxia, axonal neuropathy, and progressive cerebellar ataxia. Cells from a patient with mutations in XRCC1 exhibited not only reduced rates of single-strand break repair but also elevated levels of protein ADP-ribosylation. This latter phenotype is recapitulated in a related syndrome caused by mutations in the XRCC1 partner protein PNKP and implicates hyperactivation of poly(ADP-ribose) polymerase/s as a cause of cerebellar ataxia. Indeed, remarkably, genetic deletion of Parp1 rescued normal cerebellar ADP-ribose levels and reduced the loss of cerebellar neurons and ataxia in Xrcc1-defective mice, identifying a molecular mechanism by which endogenous single-strand breaks trigger neuropathology. Collectively, these data establish the importance of XRCC1 protein complexes for normal neurological function and identify PARP1 as a therapeutic target in DNA strand break repair-defective disease.


Assuntos
Ataxia Cerebelar/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Poli(ADP-Ribose) Polimerase-1/metabolismo , Adenosina Difosfato Ribose/metabolismo , Alelos , Animais , Apraxias/congênito , Apraxias/genética , Ataxia/genética , Axônios/patologia , Ataxia Cerebelar/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Cromatina/metabolismo , Síndrome de Cogan/genética , Quebras de DNA de Cadeia Simples , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Feminino , Humanos , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Linhagem , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
11.
PLoS Comput Biol ; 12(10): e1005137, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27760125

RESUMO

We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Aprendizado de Máquina não Supervisionado , Animais , Relógios Biológicos/fisiologia , Simulação por Computador , Humanos , Redes Neurais de Computação , Neurônios/fisiologia , Reconhecimento Automatizado de Padrão/métodos
12.
Sci Rep ; 6: 30182, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27443509

RESUMO

Amyloid ß1-42 (Aß1-42) plays a central role in Alzheimer's disease. The link between structure, assembly and neuronal toxicity of this peptide is of major current interest but still poorly defined. Here, we explored this relationship by rationally designing a variant form of Aß1-42 (vAß1-42) differing in only two amino acids. Unlike Aß1-42, we found that the variant does not self-assemble, nor is it toxic to neuronal cells. Moreover, while Aß1-42 oligomers impact on synaptic function, vAß1-42 does not. In a living animal model system we demonstrate that only Aß1-42 leads to memory deficits. Our findings underline a key role for peptide sequence in the ability to assemble and form toxic structures. Furthermore, our non-toxic variant satisfies an unmet demand for a closely related control peptide for Aß1-42 cellular studies of disease pathology, offering a new opportunity to decipher the mechanisms that accompany Aß1-42-induced toxicity leading to neurodegeneration.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doenças Neurodegenerativas/metabolismo , Sequência de Aminoácidos , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Transtornos da Memória/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Ratos
13.
Nat Commun ; 7: 11793, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257106

RESUMO

During goal-directed decision-making, animals must integrate information from the external environment and their internal state to maximize resource localization while minimizing energy expenditure. How this complex problem is solved by the nervous system remains poorly understood. Here, using a combined behavioural and neurophysiological approach, we demonstrate that the mollusc Lymnaea performs a sophisticated form of decision-making during food-searching behaviour, using a core system consisting of just two neuron types. The first reports the presence of food and the second encodes motivational state acting as a gain controller for adaptive behaviour in the absence of food. Using an in vitro analogue of the decision-making process, we show that the system employs an energy management strategy, switching between a low- and high-use mode depending on the outcome of the decision. Our study reveals a parsimonious mechanism that drives a complex decision-making process via regulation of levels of tonic inhibition and phasic excitation.


Assuntos
Comportamento Apetitivo/fisiologia , Tomada de Decisões/fisiologia , Lymnaea/fisiologia , Neurônios/fisiologia , Animais , Comportamento Alimentar/fisiologia , Objetivos , Técnicas In Vitro , Motivação , Inibição Neural/fisiologia
14.
Nat Commun ; 6: 8043, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26292808

RESUMO

Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Animais , Endocitose/fisiologia , Ratos , Ratos Sprague-Dawley
16.
Nat Protoc ; 9(6): 1337-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24833172

RESUMO

Fast activity-driven turnover of neurotransmitter-filled vesicles at presynaptic terminals is a crucial step in information transfer in the CNS. Characterization of the relationship between the nanoscale organization of synaptic vesicles and their functional properties during transmission is currently of interest. Here we outline a procedure for ultrastructural investigation of functional vesicles in synapses from native mammalian brain tissue. FM dye is injected into the target region of a brain slice and upstream axons are electrically activated to stimulate vesicle turnover and dye uptake. In the presence of diaminobenzidine (DAB), photoactivation of dye-filled vesicles yields an osmiophilic precipitate that is visible in electron micrographs. When combined with serial-section electron microscopy, fundamental ultrastructure-function relationships of presynaptic terminals in native circuits are revealed. We outline the utility of this protocol for the 3D reconstruction of a recycling vesicle pool in CA3-CA1 synapses from an acute hippocampal slice and for the characterization of its anatomically defined docked pool. This protocol requires 6-7 d.


Assuntos
Hipocampo/citologia , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura , 3,3'-Diaminobenzidina , Corantes Fluorescentes , Microscopia Eletrônica
17.
J Neurochem ; 126(2): 213-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23496032

RESUMO

The direct visualization of subcellular dynamic processes is often hampered by limitations in the resolving power achievable with conventional microscopy techniques. Fluorescence recovery after photobleaching has emerged as a highly informative approach to address this challenge, permitting the quantitative measurement of the movement of small organelles and proteins in living functioning cells, and offering detailed insights into fundamental cellular phenomena of physiological importance. In recent years, its implementation has benefited from the increasing availability of confocal microscopy systems and of powerful labeling techniques based on genetically encoded fluorescent proteins or other chemical markers. In this review, we present fluorescence recovery after photobleaching and related techniques in the context of contemporary neurobiological research and discuss quantitative and semi-quantitative approaches to their interpretation.


Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Neurônios/fisiologia , Fotodegradação , Fenômenos Fisiológicos/fisiologia , Proteínas/metabolismo , Animais , Recuperação de Fluorescência Após Fotodegradação/instrumentação , Humanos
18.
Sci Rep ; 3: 1027, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23293742

RESUMO

Natural antisense transcripts (NATs) are endogenous RNA molecules that are complementary to known RNA transcripts. The functional significance of NATs is poorly understood, but their prevalence in the CNS suggests a role in brain function. Here we investigated a long NAT (antiNOS-2 RNA) associated with the regulation of nitric oxide (NO) production in the CNS of Lymnaea, an established model for molecular analysis of learning and memory. We show the antiNOS-2 RNA is axonally trafficked and demonstrate that this is regulated by classical conditioning. Critically, a single conditioning trial changes the amount of antiNOS-2 RNA transported along the axon. This occurs within the critical time window when neurotransmitter NO is required for memory formation. Our data suggest a role for the antiNOS-2 RNA in establishing memories through the regulation of NO signaling at the synapse.


Assuntos
Axônios/metabolismo , Condicionamento Clássico/fisiologia , Pseudogenes/genética , RNA Antissenso/metabolismo , Animais , Sequência de Bases , Transporte Biológico , Sistema Nervoso Central/metabolismo , Hibridização In Situ , Lymnaea/metabolismo , Dados de Sequência Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo
19.
Neuron ; 76(3): 579-89, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23141069

RESUMO

At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal.


Assuntos
Endocitose/fisiologia , Hipocampo/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Hipocampo/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Estimulação Luminosa/métodos , Ratos , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura
20.
J Neurosci Methods ; 211(1): 11-21, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22898473

RESUMO

Dynamic clamp is a powerful approach for electrophysiological investigations allowing researchers to introduce artificial electrical components into target neurons to simulate ionic conductances, chemical or electrotonic inputs or connections to other cells. Due to the rapidly changing and potentially large current injections during dynamic clamp, problematic voltage artifacts appear on the electrode used to inject dynamic clamp currents into a target neuron. Dynamic clamp experiments, therefore, typically use two separate electrodes in the same cell, one for recording membrane potential and one for injecting currents. The requirement for two independent electrodes has been a limiting factor for the use of dynamic clamp in applications where dual recordings of this kind are difficult or impossible to achieve. The recent development of an active electrode compensation (AEC) method has overcome some of these prior limitations, permitting artifact-free dynamic clamp experimentation with a single electrode. Here we describe an AEC method for the free dynamic clamp software StdpC. The AEC component of StdpC is the first such system implemented for the use of non-expert users and comes with a set of semi-automated configuration and calibration procedures that facilitate its use. We briefly introduce the AEC method and its implementation in StdpC and then validate it with an electronic model cell and in two different biological preparations.


Assuntos
Eletrodos , Eletrofisiologia/instrumentação , Neurônios/fisiologia , Técnicas de Patch-Clamp/instrumentação , Software , Algoritmos , Animais , Artefatos , Calibragem , Células Cultivadas , Impedância Elétrica , Eletrônica , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Hipocampo/citologia , Lymnaea/fisiologia , Modelos Neurológicos , Ratos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA