Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37376432

RESUMO

Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.

2.
Food Chem Toxicol ; 168: 113387, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36041660

RESUMO

Spontaneous oxidation of ß-carotene yields a polymer-rich product (OxBC) together with minor amounts of many apocarotenoids. OxBC's activity extends ß-carotene's benefits beyond vitamin A, finding utility in supporting health in livestock, pets, and humans. Although the naturally occurring form of OxBC is consumed in foods and feeds, a direct demonstration of synthetic OxBC's safety provides additional support for its usage. A toxicological study in rats showed a maximum tolerated single oral dose of 5000 mg/kg, an LD50 of more than 10,000 mg/kg, and a NOAEL of 1875 mg/kg body weight. A repeat-dose 90-day oral toxicity study showed no adverse physiological or pathological effects. A study of OxBC uptake by mice over 2-5 days showed OxBC already was naturally present. The highest levels were in liver, lung, and hamstring. Dosing did not increase levels in liver, kidney, lung, and muscle. Increases occurred in urine, intestinal content, plasma, feces, spleen, and cecum with preferential elimination of polymer, consistent with processing of OxBC. Compared to the 4:1 polymer: apocarotenoid ratio of OxBC, polymer was enriched in liver and spleen and depleted in lung, kidney, hamstring, and abdominal muscle. The apparent control of OxBC in major tissues further supports its safety.


Assuntos
Vitamina A , beta Caroteno , Animais , Transporte Biológico , Humanos , Fígado , Camundongos , Polímeros , Ratos , beta Caroteno/farmacologia
3.
Sci Rep ; 12(1): 9772, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697917

RESUMO

With the persistence of the SARS-CoV-2 pandemic and the emergence of novel variants, the development of novel vaccine formulations with enhanced immunogenicity profiles could help reduce disease burden in the future. Intranasally delivered vaccines offer a new modality to prevent SARS-CoV-2 infections through the induction of protective immune responses at the mucosal surface where viral entry occurs. Herein, we evaluated a novel protein subunit vaccine formulation containing a resistin-trimerized prefusion Spike antigen (SmT1v3) and a proteosome-based mucosal adjuvant (BDX301) formulated to enable intranasal immunization. In mice, the formulation induced robust antigen-specific IgG and IgA titers, in the blood and lungs, respectively. In addition, the formulations were highly efficacious in a hamster challenge model, reducing viral load and body weight loss. In both models, the serum antibodies had strong neutralizing activity, preventing the cellular binding of the viral Spike protein based on the ancestral reference strain, the Beta (B.1.351) and Delta (B.1.617.2) variants of concern. As such, this intranasal vaccine formulation warrants further development as a novel SARS-CoV-2 vaccine.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Imunização , Camundongos , SARS-CoV-2
4.
J Med Chem ; 65(12): 8332-8344, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35658102

RESUMO

Archaeosomes composed of sulfated lactosyl archaeol (SLA) glycolipids from stereoisomerically pure archaeol (1) are vaccine adjuvants that can boost immunogenicity and vaccine efficacy in preclinical models. Herein, we report a new synthesis of 2,3-bis((3,7,11,15-tetramethylhexadecyl)oxy) propan-1-ol (3) by treating (±)-3-benzyloxy-1,2-propanediol with a mesylated phytol derivative through a double nucleophilic substitution reaction, followed by reductive debenzylation. Three SLA archaeosomes from archaeols of different chiral purities were prepared, and the effect of stereochemistry on their adjuvanticity toward ovalbumin was investigated. It was found that all SLA archaeosomes induced strong humoral and cell-mediated antigen-specific immune responses following immunization of C57BL/6NCrl mice, with no significant differences, irrespective of the chiral purities. The responses were comparable or better than those obtained using mimetics of approved adjuvants. The performance of SLA archaeosomes during immunization and their lack of dependence on the stereochemistry of archaeol points toward a promising, safe, scalable, and economically viable vaccine adjuvant system.


Assuntos
Glicolipídeos , Lipossomos , Adjuvantes Imunológicos/farmacologia , Animais , Glicolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina
5.
Methods Mol Biol ; 2412: 179-231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34918246

RESUMO

Adjuvants are key components of many vaccines, used to enhance the level and breadth of the immune response to a target antigen, thereby enhancing protection from the associated disease. In recent years, advances in our understanding of the innate and adaptive immune systems have allowed for the development of a number of novel adjuvants with differing mechanisms of action. Herein, we review adjuvants currently approved for human and veterinary use, describing their use and proposed mechanisms of action. In addition, we will discuss additional promising adjuvants currently undergoing preclinical and/or clinical testing.


Assuntos
Vacinas , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antígenos , Humanos , Imunidade Inata
6.
Pharmaceutics ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673382

RESUMO

Cancer remains a leading cause of morbidity and mortality worldwide. While novel treatments have improved survival outcomes for some patients, new treatment modalities/platforms are needed to combat a wider variety of tumor types. Cancer vaccines harness the power of the immune system to generate targeted tumor-specific immune responses. Liposomes composed of glycolipids derived from archaea (i.e., archaeosomes) have been shown to be potent adjuvants, inducing robust, long-lasting humoral and cell-mediated immune responses to a variety of antigens. Herein, we evaluated the ability of archaeosomes composed of sulfated lactosyl archaeol (SLA), a semi-synthetic archaeal glycolipid, to enhance the immunogenicity of a synthetic long peptide-based vaccine formulation containing the dominant CD8+ T cell epitope, SIINFEKL, from the weakly immunogenic model antigen ovalbumin. One advantage of immunizing with long peptides is the ability to include multiple epitopes, for example, the long peptide antigen was also designed to include the immediately adjacent CD4+ epitope, TEWTSSNVMEER. SLA archaeosomes were tested alone or in combination with the toll-like receptor 3 (TLR3) agonist Poly(I:C). Overall, SLA archaeosomes synergized strongly with Poly(I:C) to induce robust antigen-specific CD8+ T cell responses, which were highly functional in an in vivo cytolytic assay. Furthermore, immunization with this vaccine formulation suppressed tumor growth and extended mouse survival in a mouse melanoma tumor model. Overall, the combination of SLA archaeosomes and Poly(I:C) appears to be a promising adjuvant system when used along with long peptide-based antigens targeting cancer.

7.
Pharmaceutics ; 13(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540932

RESUMO

Archaeosomes, composed of sulfated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. SLA archaeosomes are a promising adjuvant candidate due to their ability to strongly stimulate both humoral and cytotoxic immune responses when simply admixed with an antigen. In the present study, we evaluated whether the adjuvant effects of SLA archaeosomes could be further enhanced when combined with other adjuvants. SLA archaeosomes were co-administered with five different Toll-like Receptor (TLR) agonists or the saponin QS-21 using ovalbumin as a model antigen in mice. Both humoral and cellular immune responses were greatly enhanced compared to either adjuvant alone when SLA archaeosomes were combined with either the TLR3 agonist poly(I:C) or the TLR9 agonist CpG. These results were also confirmed in a separate study using Hepatitis B surface antigen (HBsAg) and support the further evaluation of these adjuvant combinations.

8.
Methods Mol Biol ; 2183: 513-524, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959264

RESUMO

An effective vaccine depends on the stimulation of the immune system to generate effective antigen-specific immune responses capable of neutralizing mediators of disease long after vaccination. However, the ability of the vaccine to enhance immune parameters such as cell activation, cell recruitment and antigen uptake shortly following administration contributes to the development of long-term responses directed toward the antigen. Here, we describe a flow cytometry-based method to identify changes in immune cell profile and assess cellular uptake and distribution of antigen following vaccination.


Assuntos
Antígenos/imunologia , Vacinas/administração & dosagem , Vacinas/imunologia , Animais , Citometria de Fluxo , Imunidade , Imunização , Injeções Intramusculares , Linfonodos/imunologia , Linfonodos/metabolismo , Camundongos , Vacinação/métodos , Vacinas/química
9.
Methods Mol Biol ; 2183: 537-547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959266

RESUMO

Direct ELISA allows for the measurement of antibody levels to a particular antigen. Serum or plasma from the vaccinated subject are incubated on high-binding capacity microplates precoated with the antigen of interest and detected utilizing an enzyme-linked secondary antibody. Herein, using influenza hemagglutinin as model antigen, we describe the quantification of antigen-specific IgG titers in mouse serum to measure vaccine-induced humoral responses.


Assuntos
Especificidade de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Imunoglobulina G/imunologia , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Camundongos , Vacinas/imunologia
10.
Methods Mol Biol ; 2183: 549-558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32959267

RESUMO

Herein, a method to measure in vivo CD8+ T cell cytotoxicity in a murine model is presented. The activation of a strong CD8+ T cell response is paramount when designing vaccines to tackle intracellular infections and for cancer therapy. CD8+ T cells can directly kill infected and transformed cells and are directly associated with beneficial protection in many disease models. CD8+ T cell cytotoxicity can be measured using multiple methods including measuring IFNγ production by ELISPOT or measuring intracellular cytokines or cytotoxic granules by flow cytometry. However, to determine the ability of CD8+ T cells to kill their target in the context of its cognate receptor and in their native environment, the in vivo cytotoxic T cell assay (in vivo CTL) is ideal. The in vivo CTL assay provides a snapshot of the whole ability of the host to kill "Target" cells by measuring the loss of injected target cells relative to "Non-target" cells. The assay involves isolating splenocytes from donor mice, forming "Target" and "Non-target" cellular samples and injecting them intravenously into naïve and experimental mice at a chosen time-point in the experiment. Mice are humanely sacrificed 20 h later, and their spleens are excised and processed for flow cytometric analysis. The extent of "Target" cell killing relative to "Non-target" cells is determined by comparing the surviving proportions of these cells among experimental mice relative to naïve mice. The in vivo CTL assay is a rapid, sensitive, and reliable method to measure the potency of CD8+ T cells in their host to kill their target.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Animais , Biomarcadores , Linfócitos T CD8-Positivos/metabolismo , Imunidade Celular , Imunização , Imunofenotipagem , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Vacinas/imunologia
11.
J Liposome Res ; 31(3): 237-245, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32583693

RESUMO

Archaeosomes, composed of sulphated lactosyl archaeol (SLA) glycolipids, have been proven to be an effective vaccine adjuvant in multiple preclinical models of infectious disease or cancer. In addition to efficacy, the stability of vaccine components including the adjuvant is an important parameter to consider when developing novel vaccine formulations. To properly evaluate the potential of SLA glycolipids to be used as vaccine adjuvants in a clinical setting, a comprehensive evaluation of their stability is required. Herein, we evaluated the long term stability of preformed empty SLA archaeosomes prior to admixing with antigen at 4 °C or 37 °C for up to 6 months. In addition, the stability of adjuvant and antigen was evaluated for up to 1 month following admixing. Multiple analytical parameters evaluating the molecular integrity of SLA and the liposomal profile were assessed. Following incubation at 4 °C or 37 °C, the SLA glycolipid did not show any pattern of degradation as determined by mass spectroscopy, nuclear magnetic resonance (NMR) and thin layer chromatography (TLC). In addition, SLA archaeosome vesicle characteristics, such as size, zeta potential, membrane fluidity and vesicular morphology, were largely consistent throughout the course of the study. Importantly, following storage for 6 months at both 4 °C and 37 °C, the adjuvant properties of empty SLA archaeosomes were unchanged, and following admixing with antigen, the immunogenicity of the vaccine formulations was also unchanged when stored at both 4 °C and 37 °C for up to 1 month. Overall this indicates that SLA archaeosomes are highly stable adjuvants that retain their activity over an extended period of time even when stored at high temperatures.


Assuntos
Lipossomos , Vacinas , Antígenos Arqueais , Imunidade Celular , Lipídeos
12.
Hum Vaccin Immunother ; 16(9): 2183-2195, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32755430

RESUMO

Archaeosomes are liposomes formulated using total polar lipids (TPLs) or semi-synthetic glycolipids derived from archaea. Conventional archaeosomes with entrapped antigen exhibit robust adjuvant activity as demonstrated by increased antigen-specific humoral and cell-mediated responses and enhanced protective immunity in various murine infection and cancer models. However, antigen entrapment efficiency can vary greatly resulting in antigen loss during formulation and variable antigen:lipid ratios. In order to circumvent this, we recently developed an admixed archaeosome formulation composed of a single semi-synthetic archaeal lipid (SLA, sulfated lactosylarchaeol) which can induce similarly robust adjuvant activity as an encapsulated formulation. Herein, we evaluate and compare the mechanisms involved in the induction of early innate and antigen-specific responses by both admixed (Adm) and encapsulated (Enc) SLA archaeosomes. We demonstrate that both archaeosome formulations result in increased immune cell infiltration, enhanced antigen retention at injection site and increased antigen uptake by antigen-presenting cells and other immune cell types, including neutrophils and monocytes following intramuscular injection to mice using ovalbumin as a model antigen. In vitro studies demonstrate SLA in either formulation is preferentially taken up by macrophages. Although the encapsulated formulation was better able to induce antigen-specific CD8+ T cell activation by dendritic cells in vitro, both encapsulated and admixed formulations gave equivalently enhanced protection from tumor challenge when tested in vivo using a B16-OVA melanoma model. Despite some differences in the immunostimulatory profile relative to the SLA (Enc) formulation, SLA (Adm) induces strong in vivo immunogenicity and efficacy, while offering an ease of formulation.


Assuntos
Vacinas , Adjuvantes Imunológicos , Animais , Imunidade Celular , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina
13.
Vaccines (Basel) ; 7(4)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816920

RESUMO

Infection by Hepatitis C virus (HCV) can lead to liver cirrhosis/hepatocellular carcinoma and remains a major cause of serious disease morbidity and mortality worldwide. However, current treatment regimens remain inaccessible to most patients, particularly in developing countries, and, therefore, the development of a novel vaccine capable of protecting subjects from chronic infection by HCV could greatly reduce the rates of HCV infection, subsequent liver pathogenesis, and in some cases death. Herein, we evaluated two different semi-synthetic archaeosome formulations as an adjuvant to the E1/E2 HCV envelope protein in a murine model and compared antigen-specific humoral (levels of anti-E1/E2 IgG and HCV pseudoparticle neutralization) and cellular responses (numbers of antigen-specific cytokine-producing T cells) to those generated with adjuvant formulations composed of mimetics of commercial adjuvants including a squalene oil-in-water emulsion, aluminum hydroxide/monophosphoryl lipid A (MPLA) and liposome/MPLA/QS-21. In addition, we measured the longevity of these responses, tracking humoral, and cellular responses up to 6 months following vaccination. Overall, we show that the strength and longevity of anti-HCV responses can be influenced by adjuvant selection. In particular, a simple admixed sulfated S-lactosylarchaeol (SLA) archaeosome formulation generated strong levels of HCV neutralizing antibodies and polyfunctional antigen-specific CD4 T cells producing multiple cytokines such as IFN-γ, TNF-α, and IL-2. While liposome/MPLA/QS-21 as adjuvant generated superior cellular responses, the SLA E1/E2 admixed formulation was superior or equivalent to the other tested formulations in all immune parameters tested.

14.
Biomedicines ; 7(4)2019 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771150

RESUMO

Archaeosomes are liposomes composed of natural or synthetic archaeal lipids that when used as adjuvants induce strong long-lasting humoral and cell-mediated immune responses against entrapped antigens. However, traditional entrapped archaeosome formulations have only low entrapment efficiency, therefore we have developed a novel admixed formulation which offers many advantages, including reduced loss of antigen, consistency of batch-to-batch production as well as providing the option to formulate the vaccine immediately before use, which is beneficial for next generation cancer therapy platforms that include patient specific neo-antigens or for use with antigens that are less stable. Herein, we demonstrate that, when used in combination with anti-CTLA-4 and anti-PD-1 checkpoint therapy, this novel admixed archaeosome formulation, comprised of preformed sulfated lactosyl archaeol (SLA) archaeosomes admixed with OVA antigen (SLA-OVA (adm)), was as effective at inducing strong CD8+ T cell responses and protection from a B16-OVA melanoma tumor challenge as the traditionally formulated archaeosomes with encapsulated OVA protein. Furthermore, archaeosome vaccine formulations combined with anti-CTLA-4 and anti-PD-1 therapy, induced OVA-CD8+ T cells within the tumor and immunohistochemical analysis revealed the presence of CD8+ T cells associated with dying or dead tumor cells as well as within or around tumor blood vessels. Overall, archaeosomes constitute an attractive option for use with combinatorial checkpoint inhibitor cancer therapy platforms.

15.
Vaccine ; 37(47): 7108-7116, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31383490

RESUMO

Vaccine induced responses are often weaker in those individuals most susceptible to infection, namely the very young and the elderly, highlighting the need for safe and effective vaccine adjuvants. Herein we evaluated different archaeosome formulations as an adjuvant to the H1N1 influenza hemagglutinin protein and compared immune responses (anti-HA IgG and hemagglutination inhibition assay titers) as well as protection to an influenza A virus (strainA/PuertoRico/8/1934H1N1)homologous challenge to those generated using a squalene-based oil-in-water nano-emulsion, AddaVax™ in a murine model. The impact of age (young adult vs aged) on vaccine induced immune responses as well as the protection in pups due to the transfer of maternal antibodies was measured. Overall, we show that archaeal lipid based adjuvants can induce potent anti-HA responses in young and aged mice that can also be passed from vaccinated mothers to pups. Furthermore, young and aged mice immunized with archaeal lipid adjuvants as well as pups from immunized mothers were protected from challenge with influenza. In addition, we show that a simple admixed archaeosome formulation composed of a single sulfated glycolipid namely sulfated lactosylarchaeol (SLA; 6'-sulfate-ß-D-Galp-(1,4)-ß-D-Glcp-(1,1)-archaeol) can give equal or better protection compared to AddaVax™ or the traditional antigen-encapsulated archaeosome formulations.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Archaea/imunologia , Glicolipídeos/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Testes de Inibição da Hemaglutinação/métodos , Imunização/métodos , Imunização Passiva/métodos , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Esqualeno/imunologia , Vacinação/métodos
16.
Int J Pharm ; 561: 187-196, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30836154

RESUMO

Archaeosomes are liposomes composed of natural or synthetic archaeal lipids that can be used as adjuvants to induce strong long-lasting humoral and cell-mediated immune responses against entrapped antigen. However, the entrapment efficiency of antigen within archaeosomes constituted using standard liposome forming methodology is often only 5-40%. In this study, we evaluated different formulation methods using a simple semi-synthetic archaeal lipid (SLA, sulfated lactosyl archaeol) and two different antigens, ovalbumin (OVA) and hepatitis B surface antigen (HBsAg). Antigen was entrapped within archaeosomes using the conventional thin film hydration-rehydration method with or without removal of non-entrapped antigen, or pre-formed empty archaeosomes were simply admixed with an antigen solution. Physicochemical characteristics were determined (size distribution, zeta potential, vesicle morphology and lamellarity), as well as location of antigen relative to bilayer using cryogenic transmission electron microscopy (TEM). We demonstrate that antigen (OVA or HBsAg) formulated with SLA lipid adjuvants using all the different methodologies resulted in a strong antigen-specific immune response. Nevertheless, the advantage of using a drug substance process that comprises of simply admixing antigen with pre-formed empty archaeosomes, represents a simple, efficient and antigenic dose-sparing formulation for adjuvanting and delivering vaccine antigens.


Assuntos
Adjuvantes Imunológicos/química , Antígenos Arqueais/imunologia , Archaea/imunologia , Portadores de Fármacos/química , Lipídeos/química , Lipossomos/química , Vacinas/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos/sangue , Contagem de Células , Fenômenos Químicos , Feminino , Antígenos de Superfície da Hepatite B/imunologia , Imunidade Celular/efeitos dos fármacos , Interferon gama/metabolismo , Lipossomos/ultraestrutura , Camundongos , Ovalbumina/imunologia , Baço/metabolismo , Vacinas/química
17.
PLoS One ; 13(12): e0208067, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30513093

RESUMO

Archaeosomes are liposomes traditionally comprised of total polar lipids (TPL) or semi-synthetic glycerolipids of ether-linked isoprenoid phytanyl cores with varied glyco- and amino-head groups. As adjuvants, they induce robust, long-lasting humoral and cell-mediated immune responses and enhance protection in murine models of infectious disease and cancer. Traditional total polar lipid (TPL) archaeosome formulations are relatively complex and first generation semi-synthetic archaeosomes involve many synthetic steps to arrive at the final desired glycolipid composition. We have developed a novel archaeosome formulation comprising a sulfated disaccharide group covalently linked to the free sn-1 hydroxyl backbone of an archaeal core lipid (sulfated S-lactosylarchaeol, SLA) that can be more readily synthesized yet retains strong immunostimulatory activity for induction of cell-mediated immunity following systemic immunization. Herein, we have evaluated the immunostimulatory effects of SLA archaeosomes when used as adjuvant with ovalbumin (OVA) and hepatitis B surface antigen (HBsAg) and compared this to various other adjuvants including TLR3/4/9 agonists, oil-in-water and water-in-oil emulsions and aluminum hydroxide. Overall, we found that semi-synthetic sulfated glycolipid archaeosomes induce strong Ag-specific IgG titers and CD8 T cells to both antigens. In addition, they induce the expression of a number of cytokines/chemokines including IL-6, G-CSF, KC & MIP-2. SLA archaeosome formulations demonstrated strong adjuvant activity, superior to many of the other tested adjuvants.


Assuntos
Adjuvantes Imunológicos , Éteres de Glicerila/imunologia , Glicolipídeos/imunologia , Halobacterium salinarum/química , Imunidade Celular/efeitos dos fármacos , Lipossomos/imunologia , Vacinas/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Éteres de Glicerila/administração & dosagem , Éteres de Glicerila/química , Glicolipídeos/administração & dosagem , Glicolipídeos/química , Antígenos de Superfície da Hepatite B/administração & dosagem , Antígenos de Superfície da Hepatite B/imunologia , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Animais , Ovalbumina , Testes Sorológicos , Vacinas/administração & dosagem , Vacinas/química
18.
Hum Vaccin Immunother ; 14(7): 1746-1759, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29336668

RESUMO

Archaeosomes are liposomes comprised of ether lipids derived from various archaea. Unlike conventional ester-linked liposomes, archaeosomes exhibit high pH and thermal stability. As adjuvants, archaeosomes can induce robust, long-lasting humoral and cell-mediated immune responses and enhance protection in murine models of infectious disease and cancer. Archaeosomes constituted with total polar lipids (TPL) of various archaea are relatively complex, comprising >10 different lipid compounds. Archaeosomes can be constituted with semi-synthetic glycerolipids built on ether-linked isoprenoid phytanyl cores with varied synthetic glycol- and amino-head groups. However, such semi-synthetic archaeosomes involve many synthetic steps to arrive at the final desired glycolipid composition. We have developed a novel archaeosome formulation comprising a sulfated saccharide group covalently linked to the free sn-1 hydroxyl backbone of an archaeal core lipid (sulfated S-lactosylarchaeol, SLA) mixed with uncharged glycolipid (lactosylarchaeol, LA). This new class of adjuvants can be easily synthesized and retains strong immunostimulatory activity for induction of cell-mediated immunity following systemic immunization. Herein, we demonstrate the safety of SLA/LA archaeosomes following intramuscular injection to mice and evaluate the immunogenicity, in vivo distribution and cellular uptake of antigen (ovalbumin) encapsulated into SLA/LA archaeosomes. Overall, we have found that semi-synthetic sulfated glycolipid archaeosomes are a safe and effective novel class of adjuvants capable of inducing strong antigen-specific immune responses in mice and protection against subsequent B16 melanoma tumor challenge. A key step in their mechanism of action appears to be the recruitment of immune cells to the injection site and the subsequent trafficking of antigen to local draining lymph nodes.


Assuntos
Adjuvantes Imunológicos/farmacocinética , Archaea/química , Vacinas Anticâncer/imunologia , Glicolipídeos/farmacocinética , Lipossomos/farmacocinética , Animais , Imunidade Celular , Injeções Intramusculares , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Distribuição Tecidual , Vacinação/métodos
19.
Vaccines (Basel) ; 5(4)2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072624

RESUMO

Archaeosomes constitute archaeal lipid vesicle vaccine adjuvants that evoke a strong CD8⁺ T cell response to antigenic cargo. Therapeutic treatment of murine B16-ovalbumin (B16-OVA) melanoma with archaeosome-OVA eliminates small subcutaneous solid tumors; however, they eventually resurge despite an increased frequency of circulating and tumor infiltrating OVA-CD8⁺ T cells. Herein, a number of different approaches were evaluated to improve responses, including dose number, interval, and the combination of vaccine with checkpoint inhibitors. Firstly, we found that tumor protection could not be enhanced by repetitive and/or delayed boosting to maximize the CD8⁺ T cell number and/or phenotype. The in vivo cytotoxicity of vaccine-induced OVA-CD8⁺ T cells was impaired in tumor-bearing mice. Additionally, tumor-infiltrating OVA-CD8⁺ T cells had an increased expression of programmed cell death protein-1 (PD-1) compared to other organ compartments, suggesting impaired function. Combination therapy of tumor-bearing mice with the vaccine archaeosome-OVA, and α-CTLA-4 administered concurrently as well as α-PD-1 and an α-PD-L1 antibody administered starting 9 days after tumor challenge given on a Q3Dx4 schedule (days 9, 12, 15 and 18), significantly enhanced survival. Following multi-combination therapy ~70% of mice had rapid tumor recession, with no detectable tumor mass after >80 days in comparison to a median survival of 17-22 days for untreated or experimental groups receiving single therapies. Overall, archaeosomes offer a powerful platform for delivering cancer antigens when used in combination with checkpoint inhibitor immunotherapies.

20.
Vaccines (Basel) ; 4(4)2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27869670

RESUMO

Homologous prime-boost vaccinations with live vectors typically fail to induce repeated strong CD8⁺ T cell responses due to the induction of anti-vector immunity, highlighting the need for alternative delivery vehicles. The unique ether lipids of archaea may be constituted into liposomes, archaeosomes, which do not induce anti-carrier responses, making them an ideal candidate for use in repeat vaccination systems. Herein, we evaluated in mice the maximum threshold of antigen-specific CD8⁺ T cell responses that may be induced by multiple homologous immunizations with ovalbumin (OVA) entrapped in archaeosomes derived from the ether glycerolipids of the archaeon Methanobrevibacter smithii (MS-OVA). Up to three immunizations with MS-OVA administered in optimized intervals (to allow for sufficient resting of the primed cells prior to boosting), induced a potent anti-OVA CD8⁺ T cell response of up to 45% of all circulating CD8⁺ T cells. Additional MS-OVA injections did not add any further benefit in increasing the memory of CD8⁺ T cell frequency. In contrast, OVA expressed by Listeria monocytogenes (LM-OVA), an intracellular bacterial vector failed to evoke a boosting effect after the second injection, resulting in significantly reduced antigen-specific CD8⁺ T cell frequencies. Furthermore, repeated vaccination with MS-OVA skewed the response increasingly towards an effector memory (CD62low) phenotype. Vaccinated animals were challenged with B16-OVA at late time points after vaccination (+7 months) and were afforded protection compared to control. Therefore, archaeosomes constituted a robust particulate delivery system to unravel the kinetics of CD8⁺ T cell response induction and memory maintenance and constitute an efficient vaccination regimen optimized for tumor protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...