Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534327

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, yet the cellular and molecular mechanisms underlying the AF substrate remain unclear. Isolevuglandins (IsoLGs) are highly reactive lipid dicarbonyl products that mediate oxidative stress-related injury. In murine hypertension, the lipid dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) reduced IsoLGs and AF susceptibility. We hypothesized that IsoLGs mediate detrimental pathophysiologic effects in atrial cardiomyocytes that promote the AF substrate. Using Seahorse XFp extracellular flux analysis and a luminescence assay, IsoLG exposure suppressed intracellular ATP production in atrial HL-1 cardiomyocytes. IsoLGs caused mitochondrial dysfunction, with reduced mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) with protein carbonylation, and mitochondrial DNA damage. Moreover, they generated cytosolic preamyloid oligomers previously shown to cause similar detrimental effects in atrial cells. In mouse atrial and HL-1 cells, patch clamp experiments demonstrated that IsoLGs rapidly altered action potentials (AP), implying a direct effect independent of oligomer formation by reducing the maximum Phase 0 upstroke slope and shortening AP duration due to ionic current modifications. IsoLG-mediated mitochondrial and electrophysiologic abnormalities were blunted or totally prevented by 2-HOBA. These findings identify IsoLGs as novel mediators of oxidative stress-dependent atrial pathophysiology and support the investigation of dicarbonyl scavengers as a novel therapeutic approach to prevent AF.


Assuntos
Fibrilação Atrial , Benzilaminas , Doenças Mitocondriais , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Lipídeos/química , Espécies Reativas de Oxigênio/metabolismo
2.
Cardiovasc Res ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377486

RESUMO

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signaling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and hematologic disorders including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are a major component of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared to WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, proarrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodeling in vitro. Inhibition of soluble TNF-α prevented electrical remodeling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSIONS: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and in humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the proarrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodeling.

3.
JACC Basic Transl Sci ; 5(6): 602-615, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613146

RESUMO

Oxidative damage is implicated in atrial fibrillation (AF), but antioxidants are ineffective therapeutically. The authors tested the hypothesis that highly reactive lipid dicarbonyl metabolites, or isolevuglandins (IsoLGs), are principal drivers of AF during hypertension. In a hypertensive murine model and stretched atriomyocytes, the dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) prevented IsoLG adducts and preamyloid oligomers (PAOs), and AF susceptibility, whereas the ineffective analog 4-hydroxybenzylamine (4-HOBA) had minimal effect. Natriuretic peptides generated cytotoxic oligomers, a process accelerated by IsoLGs, contributing to atrial PAO formation. These findings support the concept of pre-emptively scavenging reactive downstream oxidative stress mediators as a potential therapeutic approach to prevent AF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...