Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetol Metab Syndr ; 16(1): 133, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886825

RESUMO

BACKGROUND: Elevations in the gut metabolite trimethylamine-N-oxide (TMAO) have been linked to cardiovascular and metabolic diseases. Whether elevated TMAO levels reflect early mechanistic involvement or a sequela of evolving disease awaits elucidation. The purpose of this study was to further explore these potential associations. METHODS: We investigated relationships between circulating levels of TMAO and its pre-cursor substrates, dietary factors, gut microbiome profiles and disease risk in individuals with a Healthy BMI (18.5 < BMI < 25, n = 41) or key precursor states for cardiometabolic disease: Overweight (25 < BMI < 30 kg/m2, n = 33), Obese (BMI > 30, n = 27) and Metabolic Syndrome (MetS; ≥ 3 ATPIII report criteria, n = 39). RESULTS: Unexpectedly, plasma [TMAO] did not vary substantially between groups (means of 3-4 µM; p > 0.05), although carnitine was elevated in participants with MetS. Gut microbial diversity and Firmicutes were also significantly reduced in the MetS group (p < 0.05). Exploratory analysis across diverse parameters reveals significant correlations between circulating [TMAO] and seafood intake (p = 0.007), gut microbial diversity (p = 0.017-0.048), and plasma [trimethylamine] (TMA; p = 0.001). No associations were evident with anthropometric parameters or cardiometabolic disease risk. Most variance in [TMAO] within and between groups remained unexplained. CONCLUSIONS: Data indicate that circulating [TMAO] may be significantly linked to seafood intake, levels of TMA substrate and gut microbial diversity across healthy and early disease phenotypes. However, mean concentrations remain < 5 µM, with little evidence of links between TMAO and cardiometabolic disease risk. These observations suggest circulating TMAO may not participate mechanistically in cardiometabolic disease development, with later elevations likely a detrimental sequela of extant disease.

2.
Poult Sci ; 103(3): 103443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271755

RESUMO

In ovo delivery of carvacrol, the primary active compound in oregano essential oil (OEO) has the potential to enhance gut development in broilers. This study aimed to optimize in ovo application of OEO by investigating day and site of injection and delivery of carvacrol to different embryonic tissues. In Experiment 1, 2 d of injection (embryonic day (E) 12 or 17.5) and 3 sites of injection for OEO (air cell, amniotic fluid, or yolk) were evaluated based on hatchability and posthatching performance. Experiment 2 aimed to examine the impact of combining OEO with the nonionic surfactant polysorbate 80 (p80) at ratios to carvacrol of 0:0, 0:1, 0.5:1, and 1:1 on carvacrol concentration in amniotic fluid, blood, and yolk. The concentration of carvacrol was measured at 3, 6, and 9 h after OEO injection either without (0:1) or with (1:1) p80. Injection of OEO on E12 led to a significant lower hatchability compared to E17.5 (P ≤ 0.01; Δ = 9.2%). Injecting OEO into the air cell, amniotic fluid, or yolk at E17.5 did not significantly affect hatchability and posthatching performance. The highest concentrations of carvacrol found in egg tissues were observed when injected together with surfactant at the 1:1 ratio (P ≤ 0.001; 14.45 µM, 16.64 µM, and 124.82 µM, for air cell, amniotic fluid, and yolk, respectively) compared to the 0:0, 0:1 or 0.5:1 ratios. Carvacrol was highest in the amniotic fluid and blood at the first time point (3 h postinjection) and decreased afterward (P ≤ 0.001), whereas the concentration in yolk remained elevated up to 9 h postinjection. In conclusion, the optimization of the in ovo delivery of carvacrol resulted in that early injection (E12) had negative effects on hatchability and should be avoided. The findings also suggest that using a nonionic surfactant was crucial for an effective delivery of carvacrol in ovo and the migration from amniotic fluid to yolk within 3 h. In addition, carvacrol's persistence in yolk may serve as a route for delivery into the gastrointestinal tract via the yolk stalk during the peri-hatching phase, potentially influencing gut development.


Assuntos
Galinhas , Cimenos , Óvulo , Animais , Injeções/veterinária , Tensoativos
3.
Sci Rep ; 13(1): 6942, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117259

RESUMO

The objective of this study was to determine the influence of a total-mixed ration including unsalable carrots at 45% DM on the rumen microbiome; and the plasma, rumen and liver metabolomes. Carrots discarded at processing were investigated as an energy-dense substitute for barley grain in a conventional feedlot diet, and improved feed conversion efficiency by 25%. Here, rumen fluid was collected from 34 Merino lambs at slaughter (n = 16 control; n = 18 carrot) after a feeding period of 11-weeks. The V4 region of the 16S rRNA gene was sequenced to profile archaeal and bacterial microbe communities. Further, a comprehensive, targeted profile of known metabolites was constructed for blood plasma, rumen fluid and biopsied liver metabolites using a gas chromatography mass spectrometry (GC-MS) metabolomics approach. An in vitro batch culture was used to characterise ruminal fermentation including gas and methane (CH4) production. In vivo rumen microbial community structure of carrot fed lambs was dissimilar (P < 0.01; PERMANOVA), and all measures of alpha diversity were greater (P < 0.01), compared to those fed the control diet. Unclassified genera in Bacteroidales (15.9 ± 6.74% relative abundance; RA) were more abundant (P < 0.01) in the rumen fluid of carrot-fed lambs, while unclassified taxa in the Succinivibrionaceae family (11.1 ± 3.85% RA) were greater (P < 0.01) in the control. The carrot diet improved in vitro ruminal fermentation evidenced as an 8% increase (P < 0.01) in DM digestibility and a 13.8% reduction (P = 0.01) in CH4 on a mg/ g DM basis, while the control diet increased (P = 0.04) percentage of propionate within total VFA by 20%. Fourteen rumen fluid metabolites and 27 liver metabolites were influenced (P ≤ 0.05) by diet, while no effect (P ≥ 0.05) was observed in plasma metabolites. The carrot diet enriched (impact value = 0.13; P = 0.01) the tyrosine metabolism pathway (acetoacetic acid, dopamine and pyruvate), while the control diet enriched (impact value = 0.42; P ≤ 0.02) starch and sucrose metabolism (trehalose and glucose) in rumen fluid. This study demonstrated that feeding 45% DM unsalable carrots diversified bacterial communities in the rumen. These dietary changes influenced pathways of tyrosine degradation, such that previous improvements in feed conversion efficiency in lambs could be explained.


Assuntos
Daucus carota , Animais , Daucus carota/metabolismo , Rúmen/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ração Animal/análise , Dieta/veterinária , Bactérias , Fermentação , Aminoácidos/metabolismo , Tirosina/metabolismo , Digestão
4.
Metab Eng ; 77: 143-151, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990382

RESUMO

The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.


Assuntos
Alquil e Aril Transferases , Sesquiterpenos , Geraniltranstransferase/genética , Proteômica , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/genética , Terpenos
5.
Nat Commun ; 13(1): 6115, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253480

RESUMO

Anaerobic microorganisms are thought to play a critical role in regulating the flux of short-chain gaseous alkanes (SCGAs; including ethane, propane and butane) from terrestrial and aquatic ecosystems to the atmosphere. Sulfate has been confirmed to act as electron acceptor supporting microbial anaerobic oxidation of SCGAs, yet several other energetically more favourable acceptors co-exist with these gases in anaerobic environments. Here, we show that a bioreactor seeded with biomass from a wastewater treatment facility can perform anaerobic propane oxidation coupled to nitrate reduction to dinitrogen gas and ammonium. The bioreactor was operated for more than 1000 days, and we used 13C- and 15N-labelling experiments, metagenomic, metatranscriptomic, metaproteomic and metabolite analyses to characterize the microbial community and the metabolic processes. The data collectively suggest that a species representing a novel order within the bacterial class Symbiobacteriia is responsible for the observed nitrate-dependent propane oxidation. The closed genome of this organism, which we designate as 'Candidatus Alkanivorans nitratireducens', encodes pathways for oxidation of propane to CO2 via fumarate addition, and for nitrate reduction, with all the key genes expressed during nitrate-dependent propane oxidation. Our results suggest that nitrate is a relevant electron sink for SCGA oxidation in anaerobic environments, constituting a new microbially-mediated link between the carbon and nitrogen cycles.


Assuntos
Compostos de Amônio , Nitratos , Alcanos/metabolismo , Anaerobiose , Butanos , Carbono , Dióxido de Carbono , Ecossistema , Etano/metabolismo , Fumaratos , Metano/metabolismo , Nitratos/metabolismo , Oxirredução , Propano/metabolismo , Sulfatos/metabolismo
6.
ACS Synth Biol ; 10(12): 3251-3263, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34591448

RESUMO

Metabolic pathways are commonly organized by sequestration into discrete cellular compartments. Compartments prevent unfavorable interactions with other pathways and provide local environments conducive to the activity of encapsulated enzymes. Such compartments are also useful synthetic biology tools for examining enzyme/pathway behavior and for metabolic engineering. Here, we expand the intracellular compartmentalization toolbox for budding yeast (Saccharomyces cerevisiae) with Murine polyomavirus virus-like particles (MPyV VLPs). The MPyV system has two components: VP1 which self-assembles into the compartment shell and a short anchor, VP2C, which mediates cargo protein encapsulation via binding to the inner surface of the VP1 shell. Destabilized green fluorescent protein (GFP) fused to VP2C was specifically sorted into VLPs and thereby protected from host-mediated degradation. An engineered VP1 variant displayed improved cargo capture properties and differential subcellular localization compared to wild-type VP1. To demonstrate their ability to function as a metabolic compartment, MPyV VLPs were used to encapsulate myo-inositol oxygenase (MIOX), an unstable and rate-limiting enzyme in d-glucaric acid biosynthesis. Strains with encapsulated MIOX produced ∼20% more d-glucaric acid compared to controls expressing "free" MIOX─despite accumulating dramatically less expressed protein─and also grew to higher cell densities. This is the first demonstration in yeast of an artificial biocatalytic compartment that can participate in a metabolic pathway and establishes the MPyV platform as a promising synthetic biology tool for yeast engineering.


Assuntos
Polyomavirus , Saccharomyces cerevisiae , Animais , Proteínas do Capsídeo/metabolismo , Ácido Glucárico/metabolismo , Inositol Oxigenase/metabolismo , Redes e Vias Metabólicas , Camundongos , Polyomavirus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Biotechnol Biofuels ; 13: 173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088343

RESUMO

BACKGROUND: Bioelectrochemical methane oxidation catalysed by anaerobic methanotrophic archaea (ANME) is constrained by limited methane bioavailability as well as by slow kinetics of extracellular electron transfer (EET) of ANME. In this study, we tested a combination of two strategies to improve the performance of methane-driven bioelectrochemical systems that includes (1) the use of hollow fibre membranes (HFMs) for efficient methane delivery to the ANME organisms and (2) the amendment of ferricyanide, an effective soluble redox mediator, to the liquid medium to enable electrochemical bridging between the ANME organisms and the anode, as well as to promote EET kinetics of ANME. RESULTS: The combined use of HFMs and the soluble mediator increased the performance of ANME-based bioelectrochemical methane oxidation, enabling the delivery of up to 196 mA m-2, thereby outperforming the control system by 244 times when HFMs were pressurized at 1.6 bar. CONCLUSIONS: Improving methane delivery and EET are critical to enhance the performance of bioelectrochemical methane oxidation. This work demonstrates that by process engineering optimization, energy recovery from methane through its direct oxidation at relevant rates is feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...