Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10954, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768477

RESUMO

Confined coupled acoustic line-modes supported by two parallel lines of periodic holes on opposite surfaces of a glide-symmetric waveguide have a hybrid character combining symmetric and anti-symmetric properties. These hybrid coupled acoustic line-modes have a near constant group velocity over a broad frequency range as no band gap is formed at the first Brillouin zone boundary. We show that the hybrid character of these confined modes is tuneable as a function of the spacing between the two surfaces. Further we explore how the band-gap reappears as the glide symmetry is broken.

2.
Sci Rep ; 9(1): 15773, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673035

RESUMO

The Dirac point and associated linear dispersion exhibited in the band structure of bound (non-radiative) acoustic surface modes supported on a honeycomb array of holes is explored. An aluminium plate with a honeycomb lattice of periodic sub-wavelength perforations is characterised by local pressure field measurements above the sample surface to obtain the full band-structure of bound modes. The local pressure fields of the bound modes at the K and M symmetry points are imaged, and the losses at frequencies near the Dirac frequency are shown to increase monotonically as the mode travels through the K point at the Dirac frequency on the honeycomb lattice. Results are contrasted with those from a simple hexagonal array of similar holes, and both experimentally obtained dispersion relations are shown to agree well with the predictions of a numerical model.

3.
J Acoust Soc Am ; 146(6): 4569, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893737

RESUMO

Acoustic surface waves are supported at the surface of appropriately structured elastic materials. Here the excitation and propagation of the lowest-order surface mode supported by a square array of open-ended cavities on a metal plate submerged in water is demonstrated. This mode, which has a half-wavelength character in the cavity, arises due to inter-cavity interaction by evanescent diffraction of the pressure field, and forms a band from zero-frequency to an asymptotic limit frequency. The authors perform an acoustic characterization of the pressure field close to the surface of the perforated plate in the 60-100 kHz frequency range; sound is pulsed from a fixed point-like acoustic source, and the evolution of the acoustic field across the sample surface is measured as a function of time and space with a traversing detector. Using Fourier analysis, the dispersion is imaged between points of high-symmetry (Γ,X,M) and at planes in momentum-space at fixed frequencies. Beaming of acoustic energy on the surface over a narrow frequency band was observed, caused by the anisotropic mode dispersion of the acoustic surface wave on the square lattice. The measured dispersion shows good agreement with the predictions of a numerical model.

4.
Sci Rep ; 8(1): 14438, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30237507

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

5.
Sci Rep ; 8(1): 10701, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013075

RESUMO

We study the radiative and bound acoustic modes supported by a rigid grating formed of three same-depth, narrow grooves per unit cell. One of the grooves is twice the width of the other two, forming a 'compound' grating. The structure supports so-called 'phase' resonances where the phase difference of the pressure field between the grooves on resonance varies by multiples of π. We explore the dispersion of these modes experimentally by monitoring the specularly reflected signal as a function of the angle of incidence. In addition, by near-field excitation, the dispersion of the non-radiative surface modes has been characterised. Our results are compared with the predictions of a finite element method model.

6.
Sci Adv ; 4(4): e1700988, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29651455

RESUMO

Lepidopteran scales exhibit remarkably complex ultrastructures, many of which produce structural colors that are the basis for diverse communication strategies. Little is known, however, about the early evolution of lepidopteran scales and their photonic structures. We report scale architectures from Jurassic Lepidoptera from the United Kingdom, Germany, Kazakhstan, and China and from Tarachoptera (a stem group of Amphiesmenoptera) from mid-Cretaceous Burmese amber. The Jurassic lepidopterans exhibit a type 1 bilayer scale vestiture: an upper layer of large fused cover scales and a lower layer of small fused ground scales. This scale arrangement, plus preserved herringbone ornamentation on the cover scale surface, is almost identical to those of some extant Micropterigidae. Critically, the fossil scale ultrastructures have periodicities measuring from 140 to 2000 nm and are therefore capable of scattering visible light, providing the earliest evidence of structural colors in the insect fossil record. Optical modeling confirms that diffraction-related scattering mechanisms dominate the photonic properties of the fossil cover scales, which would have displayed broadband metallic hues as in numerous extant Micropterigidae. The fossil tarachopteran scales exhibit a unique suite of characteristics, including small size, elongate-spatulate shape, ridged ornamentation, and irregular arrangement, providing novel insight into the early evolution of lepidopteran scales. Combined, our results provide the earliest evidence for structural coloration in fossil lepidopterans and support the hypothesis that fused wing scales and the type 1 bilayer covering are groundplan features of the group. Wing scales likely had deep origins in earlier amphiesmenopteran lineages before the appearance of the Lepidoptera.


Assuntos
Evolução Biológica , Fósseis , Mariposas/anatomia & histologia , Animais , Asas de Animais/anatomia & histologia , Asas de Animais/ultraestrutura
7.
Nat Commun ; 6: 7959, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324320

RESUMO

Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring.

8.
Proc Natl Acad Sci U S A ; 110(39): 15567-72, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24019497

RESUMO

For almost a century, the iridescence of tropical Morpho butterfly scales has been known to originate from 3D vertical ridge structures of stacked periodic layers of cuticle separated by air gaps. Here we describe a biological pattern of surface functionality that we have found in these photonic structures. This pattern is a gradient of surface polarity of the ridge structures that runs from their polar tops to their less-polar bottoms. This finding shows a biological pattern design that could stimulate numerous technological applications ranging from photonic security tags to self-cleaning surfaces, gas separators, protective clothing, sensors, and many others. As an important first step, this biomaterial property and our knowledge of its basis has allowed us to unveil a general mechanism of selective vapor response observed in the photonic Morpho nanostructures. This mechanism of selective vapor response brings a multivariable perspective for sensing, where selectivity is achieved within a single chemically graded nanostructured sensing unit, rather than from an array of separate sensors.


Assuntos
Estruturas Animais/anatomia & histologia , Borboletas/anatomia & histologia , Pigmentação , Estruturas Animais/efeitos dos fármacos , Animais , Borboletas/efeitos dos fármacos , Simulação por Computador , Fenômenos Ópticos , Oxigênio/farmacologia , Pigmentação/efeitos dos fármacos , Reprodutibilidade dos Testes , Propriedades de Superfície , Volatilização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...