Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
APMIS ; 131(2): 61-76, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36511842

RESUMO

Miscarriage is one of the main causes of reproductive loss, which can lead to a number of physical and psychological complications and other long-term consequences. However, the role of vaginal and uterine microbiome in such complications is poorly understood. To review the published data on the function of the female reproductive tract microbiome in the pathogenesis of early miscarriages. The articles published over the past 20 years and deposited in PubMed, Google Academy, Scopus, Elibrary, ResearchGate, and EBSCO databases were analyzed. The review presents new data on the impact of the vaginal and uterine microbiome on the local immunity, including defense against sexually transmitted infections, and its association with other factors of miscarriages. The studies on the microbiome of non-pregnant women with recurrent miscarriages in the anamnesis, patients undergoing IVF, and pregnant women with miscarriages, as well as new directions in the microbiome research are discussed. The majority of studies have demonstrated that the dominant species of the vaginal and uterine microbiome in patients with early miscarriages are non-Lactobacillus bacteria. As many of these bacteria have not previously been detected by cultural studies and their role in obstetric complications is not well defined, further research on the female reproductive tract microbiome, including the microbiome of the cervix uteri, is needed to develop new approaches for the prognosis and prevention of miscarriages.


Assuntos
Aborto Espontâneo , Microbiota , Gravidez , Feminino , Humanos , Aborto Espontâneo/etiologia , Prognóstico , Bactérias , Vagina/microbiologia
2.
Pestic Biochem Physiol ; 169: 104675, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828362

RESUMO

Bumblebees are important for crop pollination. Currently, the number of pollinators is decreasing worldwide, which is attributed mostly to the widespread use of pesticides. The aim of this work was to develop a method for assessing the genotoxicity of pesticides for the Bombus terrestris L. bumblebee using long-range PCR of mitochondrial DNA fragments. We have developed a panel of primers and assessed the genotoxicity of the following pesticides: imidacloprid, rotenone, deltamethrin, difenocanozole, malathion, metribuzin, penconazole, esfenvalerate, and dithianon. All pesticides (except imidacloprid) inhibited mitochondrial respiration fueled by pyruvate + malate; the strongest effect was observed for rotenone and difenocanozole. Three pesticides (dithianon, rotenone, and difenocanozole) affected the rate of H2O2 production. To study the pesticide-induced DNA damage in vitro and in vivo, we used three different mtDNA. The mtDNA damage was observed for all studied pesticides. Most of the studied pesticides caused significant damage to mtDNA in vitro and in vivo when ingested. Our results indicate that all tested pesticides, including herbicides and fungicides, can have a toxic effect on pollinators. However, the extent of pesticide-induced mtDNA damage in the flight muscles was significantly less upon the contact compared to the oral administration.


Assuntos
DNA Mitocondrial , Praguicidas , Animais , Abelhas , Peróxido de Hidrogênio , Mitocôndrias , Polinização
3.
J Bioenerg Biomembr ; 49(1): 3-11, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26971498

RESUMO

We demonstrate a suppression of ROS production and uncoupling of mitochondria by exogenous citrate in Mg2+ free medium. Exogenous citrate suppressed H2O2 emission and depolarized mitochondria. The depolarization was paralleled by the stimulation of respiration of mitochondria. The uncoupling action of citrate was independent of the presence of sodium, potassium, or chlorine ions, and it was not mediated by the changes in permeability of the inner mitochondrial membrane to solutes. The citrate transporter was not involved in the citrate effect. Inhibitory analysis data indicated that several well described mitochondria carriers and channels (ATPase, IMAC, ADP/ATP translocase, mPTP, mKATP) were not involved in citrate's effect. Exogenous MgCl2 strongly inhibited citrate-induced depolarization. The uncoupling effect of citrate was demonstrated in rat brain, mouse brain, mouse liver, and human melanoma cells mitochondria. We interpreted the data as an evidence to the existence of a hitherto undescribed putative inner mitochondrial membrane channel that is regulated by extramitochondrial Mg2+ or other divalent cations.


Assuntos
Cátions Bivalentes/farmacologia , Ácido Cítrico/farmacologia , Ácido Edético/farmacologia , Cloreto de Magnésio/farmacologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Transporte Biológico , Encéfalo/ultraestrutura , Humanos , Peróxido de Hidrogênio/metabolismo , Canais Iônicos/metabolismo , Melanoma/patologia , Melanoma/ultraestrutura , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo
4.
J Bioenerg Biomembr ; 46(6): 471-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25248416

RESUMO

Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 µM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50-70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200-2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction.


Assuntos
Encéfalo/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Animais , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio
5.
Antioxid Redox Signal ; 16(9): 855-68, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21529244

RESUMO

AIMS: Mitochondrial damage due to Ca(2+) overload-induced opening of permeability transition pores (PTP) is believed to play a role in selective degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Genetic ablation of mitochondrial matrix protein cyclophilin D (CYPD) has been shown to increase Ca(2+) threshold of PTP in vitro and to prevent cell death in several in vivo disease models. We investigated the role of CYPD in a mouse model of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. RESULTS: We demonstrate that in vitro, brain mitochondria isolated from CYPD knockout mice were less sensitive to MPP+ (1-methyl-4-phenyl-pyridinium ion)-induced membrane depolarization, and free radical generation compared to wild-type mice. CYPD knockout mitochondria isolated from ventral midbrain of mice treated with MPTP in vivo exhibited less damage as judged from respiratory chain Complex I activity, State 3 respiration rate, and respiratory control index than wild-type mice, whereas assessment of apoptotic markers showed no differences between the two genotypes. However, CYPD knockout mice were significantly resistant only to an acute regimen of MPTP neurotoxicity in contrast to the subacute and chronic MPTP paradigms. INNOVATION: Inactivation of CYPD is beneficial in preserving mitochondrial functions only in an acute insult model of MPTP-induced dopaminergic neurotoxicity. CONCLUSION: Our results suggest that CYPD deficiency distinguishes the modes of dopaminergic neurodegeneration in various regimens of MPTP-neurotoxicity.


Assuntos
Ciclofilinas/genética , Neurônios Dopaminérgicos/metabolismo , Intoxicação por MPTP/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-fenilpiridínio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Astrócitos/efeitos dos fármacos , Gânglios da Base/metabolismo , Cálcio/metabolismo , Morte Celular/genética , Peptidil-Prolil Isomerase F , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Intoxicação por MPTP/genética , Intoxicação por MPTP/patologia , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
6.
FASEB J ; 25(11): 4063-72, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21825035

RESUMO

Abnormal tau accumulation can lead to the development of neurodegenerative diseases. P301S mice overexpress the human tau mutated gene, resulting in tau hyperphosphorylation and tangle formation. Mice also develop synaptic deficits and microglial activation prior to any neurodegeneration and tangles. Oxidative stress can also affect tauopathy. We studied the role of oxidative stress in relationship to behavioral abnormalities and disease progression in P301S mice at 2, 7, and 10 mo of age. At 7 mo of age, P301S mice had behavioral abnormalities, such as hyperactivity and disinhibition. At the same age, we observed increased carbonyls in P301S mitochondria (∼215 and 55% increase, males/females), and deregulation in the activity and content of mitochondrial enzymes involved in reactive oxygen species formation and energy metabolism, such as citrate synthase (∼19 and ∼5% decrease, males/females), MnSOD (∼16% decrease, males only), cytochrome C (∼19% decrease, females only), and cytochrome C oxidase (∼20% increase, females only). These changes in mitochondria proteome appeared before tau hyperphosphorylation and tangle formation, which were observed at 10 mo and were associated with GSK3ß activation. At that age, mitochondria proteome deregulation became more apparent in male P301S mitochondria. The data strongly suggest that oxidative stress and mitochondrial abnormalities appear prior to tau pathology.


Assuntos
Comportamento Animal/fisiologia , Mitocôndrias/patologia , Estresse Oxidativo/fisiologia , Tauopatias/fisiopatologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Ciclo do Ácido Cítrico/fisiologia , Transporte de Elétrons/fisiologia , Comportamento Exploratório/fisiologia , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Comportamento Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...