Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e28351, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545179

RESUMO

Canine coronavirus (CCoV) can produce a self-limited enteric disease in dogs but, because of notable biological plasticity of coronaviruses (CoVs), numerous mutations as well as recombination events happen leading to the emergence of variants often more dangerous for both animals and humans. Indeed, the emergence of new canine-feline recombinant alphacoronaviruses, recently isolated from humans, highlight the cross-species transmission potential of CoVs. Consequently, new effective antiviral agents are required to treat CoV infections. Among the candidates for the development of drugs against CoVs infection, fungal secondary metabolites (SMs) represent an important source to investigate. Herein, antiviral ability of 6-pentyl-α-pyrone (6 PP), a SM obtained by Trichoderma atroviride, was assessed against CCoV. During in vitro infection, nontoxic concentration of 6 PP significantly increased cell viability, reduced morphological signs of cell death, and inhibited viral replication of CCoV. In addition, we found a noticeable lessening in the expression of aryl hydrocarbon receptor (AhR), a strategic modulator of CoVs infection. Overall, due to the variety of their chemical and biological properties, fungal SMs can decrease the replication of CoVs, thus identifying a suitable in vitro model to screen for potential drugs against CoVs, using a reference strain of CCoV (S/378), non-pathogenic for humans.

2.
J Fungi (Basel) ; 10(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392769

RESUMO

The use of biostimulants and biofilms in agriculture is constantly increasing, as they may support plant growth and productivity by improving nutrient absorption, increasing stress resilience and providing sustainable alternatives to chemical management practices. In this work, two commercial products based on Trichoderma afroharzianum strain T22 (Trianum P®) and a seaweed extract from Ascophyllum nodosum (Phylgreen®) were tested on industrial tomato plants (Solanum lycopersicum var. Heinz 5108F1) in a field experiment. The effects of single and combined applications of microbial and plant biostimulants on plants grown on two different biodegradable mulch films were evaluated in terms of changes in the metabolic profiles of leaves and berries. Untargeted metabolomics analysis by LC-MS Q-TOF revealed the presence of several significantly accumulated compounds, depending on the biostimulant treatment, the mulch biofilm and the tissue examined. Among the differential compounds identified, some metabolites, belonging to alkaloids, flavonoids and their derivatives, were more abundant in tomato berries and leaves upon application of Trichoderma-based product. Interestingly, the biostimulants, when applied alone, similarly affected the plant metabolome compared to control or combined treatments, while significant differences were observed according to the mulch biofilm applied.

3.
Nat Prod Res ; : 1-7, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031740

RESUMO

Pleurotus tuber-regium was isolated from a dead trunk of Raphia farinifera (Arecaceae) in a lowland moist forest in Antsohihy, Madagascar, and the species was confirmed by molecular analysis and morphological observations. The main bioactive metabolites of the mycelium extracts were identified by mass spectrometry techniques. Five structural diverse metabolites, tryptophol, pyroglutamic acid, prolyldiketopiperazine B, sporol and RKS-1778, were characterised by LC-MS qTOF analysis of the hydro-alcoholic extract. GC-MS analysis of both chloroform and ethyl acetate extracts revealed the presence of several saturated and -unsaturated fatty acids and their esters derivatives.

4.
Nat Prod Res ; : 1-5, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395452

RESUMO

Fusaric acid (FA), a picolinic acid derivative, is a natural substance produced by a wide variety of fungal plant pathogens belonging to the Fusarium genus. As a metabolite, fusaric acid exerts several biological activities including metal chelation, electrolyte leakage, repression of ATP synthesis, and direct toxicity on plants, animals and bacteria. Prior studies on the structure of fusaric acid revealed a co-crystal dimeric adduct between FA and 9,10-dehydrofusaric acid. During an ongoing search for signaling genes differentially regulating FA production in the fungal pathogen Fusarium oxysporum (Fo), we found that mutants lacking pheromone expression have an increased production of FA compared to the wild type strain. Noteworthy, crystallographic analysis of FA extracted from Fo culture supernatants showed that crystals are formed by a dimeric form of two FA molecules (1:1 molar stoichiometry). Overall, our results suggest that pheromone signaling in Fo is required to regulate the synthesis of fusaric acid.

5.
Microb Biotechnol ; 16(12): 2292-2312, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37464583

RESUMO

The construction of microbial consortia is challenging due to many variables to be controlled, including the cross-compatibility of the selected strains and their additive or synergistic effects on plants. In this work, we investigated the interactions in vitro, in planta, and at the molecular level of two elite biological control agents (BCAs), that is Streptomyces microflavus strain AtB-42 and Trichoderma harzianum strain M10, to understand their attitude to cooperate in a consortium. In vitro, we observed a strong cross-antagonism between AtB-42 and M10 in agar plates due to diffusible metabolites and volatile organic compounds. In liquid co-cultures, M10 hindered the growth of AtB-42 very likely because of secondary metabolites and strong competition for the nutrients. The interaction in the co-culture induced extensive transcriptional reprogramming in both strains, especially in the pathways related to ribosomes, protein synthesis, and oxidoreductase activity, suggesting that each strain recognized the counterpart and activated its defence responses. The metabolome of both strains was also significantly affected. In contrast, in the soil, M10 growth was partially contrasted by AtB-42. The roots of tomato seedlings inoculated with the consortium appeared smaller than the control and single-strain-inoculated plants, indicating that plants diverted some energy from the development to defence activation, as evidenced by the leaf transcriptome. The consortium induced a stronger transcriptional change compared to the single inoculants, as demonstrated by a higher number of differentially expressed genes. Although the cross-antagonism observed in vitro, the two strains exerted a synergistic effect on tomato seedlings by inducing resistance responses stronger than the single inoculants. Our observations pose a question on the usefulness of the sole in vitro assays for selecting BCAs to construct a consortium. In vivo experiments should be preferred, and transcriptomics may greatly help to elucidate the activity of the BCAs beyond the phenotypic effects on the plant.


Assuntos
Solanum lycopersicum , Trichoderma , Raízes de Plantas , Perfilação da Expressão Gênica , Técnicas de Cocultura , Trichoderma/genética , Trichoderma/metabolismo
6.
Toxins (Basel) ; 15(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37104175

RESUMO

Staphylococcus aureus is a Gram-positive bacterium, which can be found, as a commensal microorganism, on the skin surface or in the nasal mucosa of the human population. However, S. aureus may become pathogenic and cause severe infections, especially in hospitalized patients. As an opportunistic pathogen, in fact, S. aureus interferes with the host Ca2+ signaling, favoring the spread of the infection and tissue destruction. The identification of novel strategies to restore calcium homeostasis and prevent the associated clinical outcomes is an emerging challenge. Here, we investigate whether harzianic acid, a bioactive metabolite derived from fungi of the genus Trichoderma, could control S. aureus-induced Ca2+ movements. First, we show the capability of harzianic acid to complex calcium divalent cations, using mass spectrometric, potentiometric, spectrophotometric, and nuclear magnetic resonance techniques. Then, we demonstrate that harzianic acid significantly modulates Ca2+ increase in HaCaT (human keratinocytes) cells incubated with S. aureus. In conclusion, this study suggests harzianic acid as a promising therapeutical alternative against diseases associated with Ca2+ homeostasis alteration.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Cálcio/metabolismo , Queratinócitos , Mucosa Nasal/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
7.
Pharm Biol ; 61(1): 30-36, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36537592

RESUMO

CONTENT: Plant-based natural products have served as sources of remedies against pathogenic microorganisms. Although the biological activities of Viscum (Santalaceae) species are widely recognized, there is no scientific evidence for Viscum tuberculatum A. Rich. in Ethiopia. OBJECTIVE: To investigate the antimicrobial, acute toxicity, anti-inflammatory properties and phytochemical constituents of an aqueous extract of V. tuberculatum from Ethiopia. MATERIALS AND METHODS: The antibacterial activity of the aqueous leaf extract of V. tuberculatum was tested against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this extract were determined using the broth macrodilution method. The acute toxicity and anti-inflammatory effects of the extract were investigated using standard procedures on female and male white albino mice, aged 8 and 10 weeks, respectively. The phytochemical constituents of V. tuberculatum were determined using LC-MS QTOF. RESULTS: The MIC and MBC values against S. aureus were found to be 6.25 and 100 mg/mL. The LD50 value was more than 2000 mg/kg body weight of the mouse. The 400 mg/kg dose exerts 87% inhibition after 5 h of carrageenan injection. Twenty-five different metabolites, mainly flavonoids, phenolic acids and alkaloids, were identified. CONCLUSIONS: These findings demonstrate the potential antimicrobial and anti-inflammatory potential of the aqueous extract of V. tuberculatum.


Assuntos
Anti-Infecciosos , Viscum , Animais , Camundongos , Extratos Vegetais/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Anti-Inflamatórios/farmacologia , Escherichia coli , Compostos Fitoquímicos/farmacologia
8.
Nat Prod Res ; 37(11): 1816-1821, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36102750

RESUMO

Phragmanthera regularis is a hemi-parasitic shrub. It is known for treating various health ailments. The aim of this study was to evaluate the antimicrobial activity, toxicity, and chemical characterization of the leaf extracts of P regularis collected from the Schinus molle host plant in Ethiopia. The antimicrobial properties of crude extracts obtained with chloroform, ethyl acetate, methanol, and water solvents were assayed against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The methanol extract significantly inhibited the growth of S. aureus, E. coli and P. aeruginosa were resistant to any of these solvent extracts. The methanol extract was tested at 175, 550, and 2000 mg/kg body weight doses in white mice and did not reveal any toxicity. The LC-MS qTOF analysis detected flavonoids, phenolic acids, and alkaloids in the crude methanol extract. Further study is needed to investigate the effectiveness of these compounds against S. aureus.


Assuntos
Anti-Infecciosos , Loranthaceae , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Metanol , Staphylococcus aureus , Escherichia coli , Etiópia , Anti-Infecciosos/farmacologia , Solventes , Plantas , Compostos Fitoquímicos/farmacologia
9.
PLoS One ; 17(12): e0279069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36512606

RESUMO

The fungus Candida glabrata and the bacterium Staphylococcus epidermidis are important biofilm-forming microorganisms responsible of nosocomial infections in patients. In addition to causing single-species disease, these microorganisms are also involved in polymicrobial infections leading to an increased antimicrobial resistance. To expand knowledge about polymicrobial biofilms, in this study we investigate the formation of single- and dual-species biofilms of these two opportunistic pathogens employing several complementary approaches. First, biofilm biomass, biofilm metabolic activity and the microbial composition in single- and dual-species biofilms were assessed and compared. Then, the expression of three genes of C. glabrata and three genes of S. epidermidis positively related to the process of biofilm formation was evaluated. Although S. epidermidis is a stronger biofilm producer than C. glabrata, both biological and genetic data indicate that S. epidermidis growth is inhibited by C. glabrata which dominates the dual-species biofilms. To better understand the mechanisms of the interactions between the two microorganisms, a broad GC-MS metabolomic dataset of extracellular metabolites for planktonic, single- and dual-species biofilm cultures of C. glabrata and S. epidermidis was collected. As demonstrated by Partial Least Squares Discriminant Analysis (PLS-DA) of GC-MS metabolomic data, planktonic cultures, single- and dual-species biofilms can be sharply differentiated from each other by the nature and levels of an assortment of primary and secondary metabolites secreted in the culture medium. However, according to our data, 2-phenylethanol (secreted by C. glabrata) and the synergistically combined antifungal activity of 3-phenyllactic acid and of the cyclic dipeptide cyclo-(l-Pro-l-Trp) (secreted by S. epidermidis) play a major role in the race of the two microorganisms for predominance and survival.


Assuntos
Candida glabrata , Staphylococcus epidermidis , Humanos , Biofilmes , Interações Microbianas , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candida albicans
10.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235005

RESUMO

Rare-earth elements (REEs) are in all respect a class of new contaminants that may have toxic effects on organisms and microorganisms and information on their interactions with natural ligands should be of value to predict and control their diffusion in natural environments. In the current study, we investigate interactions of tripositive cations of praseodymium, europium, holmium, and thulium with harzianic acid (H2L), a secondary metabolite produced by selected strains of fungi belonging to the Trichoderma genus. We applied the same techniques and workflow previously employed in an analogous study concerning lanthanum, neodymium, samarium, and gadolinium tripositive cations. Therefore, in the current study, HPLC-ESI-HRMS experiments, circular dichroism (CD), and UV-Vis spectrophotometric absorption data, as well as accurate pH measurements, were applied to characterize bonding interactions between harzianic acid and Pr3+, Eu3+, Ho3+, and Tm3+ cations. Problems connected to the low solubility of harzianic acid in water were overcome by employing a 0.1 M NaClO4/(CH3OH + H2O 50/50 w/w) mixed solvent. For Pr3+, Ho3+, and Tm3+, only the mono complexes PrL+, HoL+, and TmL+ were detected and their formation constant determined. Eu3+ forms almost exclusively the bis complex EuL2- for which the corresponding formation constant is reported; under our experimental conditions, the mono complex EuL+ is irrelevant. Combining the results of the present and previous studies, a picture of interactions of harzianic acid with rare-earth cations extending over 8 of the 17 REEs can be composed. In order to complement chemical information with toxicological information, a battery of bioassays was applied to evaluate the effects of praseodymium, europium, holmium, and thulium tripositive cations on a suite of bioindicators including Aliivibrio fischeri (Gram-negative bacterium), Raphidocelis subcapitata (green alga), and Daphnia magna (microcrustacean), and median effective concentration (EC50) values of Pr3+, Eu3+, Ho3+, and Tm3+ for the tested species were assessed.


Assuntos
Metais Terras Raras , Praseodímio , Cátions , Biomarcadores Ambientais , Európio/química , Gadolínio , Hólmio , Hidroxibutiratos , Lantânio , Metais Terras Raras/análise , Neodímio , Pirróis , Samário , Solventes , Túlio , Água
11.
Virulence ; 13(1): 1252-1269, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35891589

RESUMO

The host - pathogen interaction is a multifactorial process subject to a co-evolutionary arms race consisting of rapid changes in both host and pathogen, controlled at the genetic and epigenetic levels. Previously, we showed intra-species variation in disease progression and pathogenicity in aphids for Metarhizium brunneum isolates MbK and Mb7. Herein, we compared genomic, epigenetic, and metabolomic variations between these isolates and their effects on pathogenicity. Genomic variation could not completely explain the observed differences between the isolates. However, differential N6-adenine methylation (6 mA) and its correlation to reduced expression of the essential SWC4 subunit of SWR1 chromatin-remodelling complex (SWR1-C) led us to hypothesize a role for swc4 in the varying pathogenicity. Mutagenesis of the essential swc4 gene in MbKisolate resulted in reduction of secondary-metabolite (SM) secretion and impaired virulence in Galleria mellonella. Our results suggest the role of SWC4 in the regulation of SMs and the role of both SWC4 and SWR1-C in virulence of M. brunneum isolates. A better understanding of epigenetic regulation of SM production and secretion in entomopathogenic fungi may enable theirmanipulation for better biocontrol performance, and expand possibilities for environmentally friendly pest control.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Metarhizium , Controle Biológico de Vetores/métodos , Fatores de Transcrição , Virulência
12.
Molecules ; 27(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335320

RESUMO

Rare-earth elements are emerging contaminants of soil and water bodies which destiny in the environment and effects on organisms is modulated by their interactions with natural ligands produced by bacteria, fungi and plants. Within this framework, coordination by harzianic acid (H2L), a Trichoderma secondary metabolite, of a selection of tripositive rare-earth cations Ln3+ (Ln3+ = La3+, Nd3+, Sm3+, and Gd3+) was investigated at 25 °C, and in a CH3OH/0.1 M NaClO4 (50/50 w/w) solvent, using mass spectrometry, circular dichroism, UV-Vis spectrophotometry, and pH measurements. Experimental data can be satisfactorily explained by assuming, for all investigated cations, the formation of a mono-complex (LnL+) and a bis-complex (LnL2-). Differences were found between the formation constants of complexes of different Ln3+ cations, which can be correlated with ionic radius. Since gadolinium is the element that raises the most concern among lanthanide elements, its effects on organisms at different levels of biological organization were explored, in the presence and absence of harzianic acid. Results of ecotoxicological tests suggest that harzianic acid can decrease gadolinium biotoxicity, presumably because of complex formation with Gd3+.


Assuntos
Elementos da Série dos Lantanídeos , Metais Terras Raras , Cátions , Fungos , Hidroxibutiratos , Elementos da Série dos Lantanídeos/química , Metais Terras Raras/química , Pirróis
13.
Pathogens ; 10(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34832604

RESUMO

Alternaria alternata isolates C1, S1, and X3 were isolated respectively from the weeds Convolvulus arvensis, Sonchus oleraceus, and Xanthium strumarium in Algiers during 2016 and identified by morphological and molecular analyses. The aim of this investigation was to chemically characterize the exometabolome of these fungi and to evaluate the myco-herbicidal potential of their culture filtrates, crude extracts, or fractions towards target weeds. Results revealed a great heterogeneity in the biochemical profiles of the exometabolome with the remarkable presence of two compounds: tenuazonic acid (TeA) and triprenyl phenol-7 (SMTP-7). To the best of our knowledge, SMTP-7-found in all the isolates-as well as 12-methoxycitromycin detected in the culture filtrate of isolate C1, have never been reported to be produced by A. alternata. Some fractions of isolates C1 and S1 showed symptoms (necrosis and chlorosis) on the detached leaves of C. arvensis and S. oleraceus, respectively with up to 100% phytotoxic effect at low concentration. In conclusion, biochemical characterization revealed great difference of C1, S1, and X3 exometabolome that is likely to explain the difference in their phytotoxic activity. Some fractions (d1, e1, h1, i1, a2, and f2) of isolates C1 and S1 of A. alternata caused severe necrosis and chlorosis on the injured detached leaves of C. arvensis and S. oleraceus, respectively.

14.
Pathogens ; 10(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358020

RESUMO

Increasing attention is being given to the development of innovative formulations to substitute the use of synthetic chemicals to improve agricultural production and resource use efficiency. Alternatives can include biological products containing beneficial microorganisms and bioactive metabolites able to inhibit plant pathogens, induce systemic resistance and promote plant growth. The efficacy of such bioformulations can be increased by the addition of polymers as adjuvants or carriers. Trichoderma afroharzianum T22, Azotobacter chroococcum 76A and 6-pentyl-α-pyrone (6PP; a Trichoderma secondary metabolite) were administrated singularly or in a consortium, with or without a carboxymethyl cellulose-based biopolymer (BP), and tested on sweet basil (Ocimum basilicum L.) grown in a protected greenhouse. The effect of the treatments on basil yield, photosynthetic activity and secondary metabolites production was assessed. Photosynthetic efficiency was augmented by the applications of the bioformulations. The applications to the rhizosphere with BP + 6PP and BP + T22 + 76A increased the total fresh weight of basil by 26.3% and 23.6%, respectively. Untargeted LC-MS qTOF analysis demonstrated that the plant metabolome was significantly modified by the treatments. Quantification of the profiles for the major phenolic acids indicated that the treatment with the T22 + 76A consortium increased rosmarinic acid content by 110%. The use of innovative bioformulations containing microbes, their metabolites and a biopolymer was found to modulate the cultivation of fresh basil by improving yield and quality, thus providing the opportunity to develop farming systems with minimal impact on the environmental footprint from the agricultural production process.

15.
Toxics ; 9(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498433

RESUMO

Some Trichoderma strains are known for their capacity to produce harzianic acid, a metabolite belonging to the tetramic acid derivatives. Harzianic acid has interesting biological properties, such as antimicrobial activities against phytopathogenic fungi and promotion of plant growth. It also possesses remarkable chemical properties, including the chelating properties toward essential transition metals, which might be related to the biological activities. Increasing knowledge on chelating properties might be relevant for understanding the various beneficial effects of harzianic acid in the interaction between the producer fungi and plants. In this work, the coordination capacity of harzianic acid was studied to evaluate the formation and stability of complexes formed with toxic heavy metals (i.e., Cd2+, Co2+, Ni2+, and Pb2+), which might have a crucial role in the tolerance of plants growing in metal-contaminated soils and in abiotic stress.

16.
Plant Sci ; 303: 110729, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487336

RESUMO

MicroRNAs regulate plant development and responses to biotic and abiotic stresses but their impact on water use efficiency (WUE) is poorly known. Increasing WUE is a major task in crop improvement programs aimed to meet the challenges posed by the reduction in water availability associated with the ongoing climatic change. We have examined the physiological and molecular response to water stress of tomato (Solanum lycopersicum L.) plants downregulated for miR396 by target mimicry. In water stress conditions, miR396-downregulated plants displayed reduced transpiration and a less then proportional decrease in the photosynthetic rate that resulted in higher WUE. The increase in WUE was associated with faster foliar accumulation of abscisic acid (ABA), with the induction of several drought-protective genes and with the activation of the jasmonic acid (JA) and γ-aminobutyric acid (GABA) pathways. We propose a model in which the downregulation of miR396 leads to the activation of a complex molecular response to water stress. This response acts synergistically with a set of leaf morphological modifications to increase stomatal closure and preserve the efficiency of the photosynthetic activity, ultimately resulting in higher WUE.


Assuntos
MicroRNAs/fisiologia , RNA de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Água/metabolismo , Ciclopentanos/metabolismo , Desidratação , Regulação para Baixo , MicroRNAs/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal , RNA de Plantas/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo
17.
Nat Prod Res ; 35(23): 5440-5445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32538678

RESUMO

The emerging concern about the increase of antibiotic resistance has encouraged research efforts to develop effective alternatives to counteract bacterial infections. Herein, we studied a new perspective to therapeutic treatment against Staphylococcus pseudintermedius, an opportunistic pathogen documented as the major cause of skin, ear, and post-operative bacterial infections in dogs and cats. Antimicrobial activity of secondary metabolites produced by selected microbial strains belonging to Trichoderma, Talaromyces, Clonostachys and Coniothyrium fungal genera has been tested against S. pseudintermedius. Several extracts, particularly those obtained from Trichoderma harzianum E45 and ET45, showed a significant antimicrobial activity towards S. pseudintermedius methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains. Bioassay-guided fractionation of E45 and ET45 extracts allowed to isolate harzianic acid as the major compound responsible for biological activities (e.g. antimicrobial, antibiofilm formation and biofilm disaggregation).


Assuntos
Doenças do Gato , Doenças do Cão , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Doenças do Gato/tratamento farmacológico , Gatos , Doenças do Cão/tratamento farmacológico , Cães , Hidroxibutiratos , Testes de Sensibilidade Microbiana , Pirróis , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus
18.
Animals (Basel) ; 10(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575657

RESUMO

Semen cryopreservation determines several sperm damages, including the loss of fertility-associated proteins. The purpose of the study was to compare the metabolite contents in bovine sperm and seminal plasma before and after cryopreservation, and between high- and low-fertility bulls in vitro. Forty-eight ejaculates, collected from eight bulls (six per bull), were analyzed by liquid chromatography-mass spectrometry. Cryopreservation resulted in an over-expression of lysophosphatidylcholine (0:0/18:2(9Z,12Z)) in seminal plasma. In addition, higher levels of glycine betaine and pyro-l-glutaminyl-l-glutamine were observed in cryopreserved compared to fresh spermatozoa. The fresh seminal plasma of high-fertility bulls showed an over-expression of l-acetylcarnitine, glycerol tripropanoate, 2,3-diacetoxypropyl stearate and glycerophosphocholine, and an under-expression of lysophosphatidylcholine and butyrylcarnitine, compared to low-fertility bulls. Higher levels of glycerophosphocholine and lysophosphatidylcholine (16:0/0:0) were recorded in fresh spermatozoa from high-fertility bulls. In high-fertility bulls, a greater content of glycerophosphocholine and lower levels of butyrylcarnitine, glycine betaine and l-carnitine were found in cryopreserved seminal plasma, and lower levels of glycine betaine were detected in cryopreserved spermatozoa. In conclusion, cryopreservation affects bovine semen metabolome at both plasmatic and cellular compartments, and metabolic profile differs between high- and low-fertility bulls.

19.
Molecules ; 25(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375327

RESUMO

Harzianic acid is a secondary metabolite of Trichoderma, structurally belonging to the dienyltetramic acid subgroup of the tetramic acids. Biological activities of harzianic acid are of great interest for its antimicrobial and plant growth-promoting activities, which might be related to its chelating properties. In the present work harzianic acid, isolated from cultures of a strain of Trichoderma pleuroticola associated to the gastropod Melarhaphe neritoides, was studied as a complexant agent of a number of biologically relevant transition metals (i.e., Zn2+, Fe2+, Cu2+, and Mn2+), using UV-VIS, potentiometry, MS and NMR techniques. Our findings show the coordination capacity of harzianic acid toward the above cations through the formation of neutral or charged complexes in a variable ratio depending on the metal and pH conditions.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Quelantes/química , Quelantes/farmacologia , Hypocreales/química , Animais , Cátions/química , Cromatografia Líquida , Gastrópodes/microbiologia , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metais/química , Estrutura Molecular , Prótons , Pirróis/química , Pirróis/farmacologia
20.
Metabolites ; 10(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019164

RESUMO

Marine-derived fungi are an important source of many valuable compounds with original structures and diverse physico-chemical properties. In this work, the metabolomic profile of a strain of Penicillium brevicompactum, recovered from a snakelocks sea anemone (Anemonia sulcata), was investigated through the parallel application of LC-ESI-HRMS, GC-MS, and NMR. Our strategy allowed the identification of mycophenolic acid, brevianamide A, and several compounds belonging to the thiosilvatins. Among the latter, five products are reported for the first time in this species. The main product of this series, cis-bis(methylthio)silvatin, was also tested for antiproliferative activity on both cancer and non-tumoral colon cell lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...