Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959430

RESUMO

The fatigue crack growth rate (FCGR) of aluminium alloys under the combined influence of temperature and humidity remains a relatively unexplored area, receiving limited attention due to its intricate nature and challenges in predicting the combined impact of these factors. The challenge was to investigate and address the specific mechanisms and interactions between temperature and humidity, as in coastal environment conditions, on the FCGR of aluminium alloy. The present study conducts a comprehensive investigation into the combined influence of temperature and humidity on the FCGR of the Al6082 alloy. The fatigue pre-cracked compact tension specimens were corroded for 7 days and then subjected to various temperature and humidity conditions in a thermal chamber for 3 days to simulate coastal environments. The obtained data were analysed to determine the influence of temperature and humidity on the FCGR of the Al6082 alloy. An empirical model was also established to precisely predict fatigue life cycle values under these environmental conditions. The correlation between FCGR and fracture toughness models was also examined. The Al6082 alloy exhibits a 34% increase in the Paris constant C, indicating reduced FCGR resistance due to elevated temperature and humidity levels. At the same time, fatigue, corrosion, moisture-assisted crack propagation, and hydrogen embrittlement lead to a 27% decrease in threshold fracture toughness. The developed model exhibited accurate predictions for fatigue life cycles, and the correlation between fracture toughness and FCGR showed an error of less than 10%, indicating a strong relationship between these parameters.

2.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896512

RESUMO

Crack propagation is a critical phenomenon in materials science and engineering, significantly impacting structural integrity, reliability, and safety across various applications. The accurate prediction of crack propagation behavior is paramount for ensuring the performance and durability of engineering components, as extensively explored in prior research. Nevertheless, there is a pressing demand for automated models capable of efficiently and precisely forecasting crack propagation. In this study, we address this need by developing a machine learning-based automated model using the powerful H2O library. This model aims to accurately predict crack propagation behavior in various materials by analyzing intricate crack patterns and delivering reliable predictions. To achieve this, we employed a comprehensive dataset derived from measured instances of crack propagation in Acrylonitrile Butadiene Styrene (ABS) specimens. Rigorous evaluation metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2) values, were applied to assess the model's predictive accuracy. Cross-validation techniques were utilized to ensure its robustness and generalizability across diverse datasets. Our results underscore the automated model's remarkable accuracy and reliability in predicting crack propagation. This study not only highlights the immense potential of the H2O library as a valuable tool for structural health monitoring but also advocates for the broader adoption of Automated Machine Learning (AutoML) solutions in engineering applications. In addition to presenting these findings, we define H2O as a powerful machine learning library and AutoML as Automated Machine Learning to ensure clarity and understanding for readers unfamiliar with these terms. This research not only demonstrates the significance of AutoML in future-proofing our approach to structural integrity and safety but also emphasizes the need for comprehensive reporting and understanding in scientific discourse.

3.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297200

RESUMO

The combined effect of temperature and humidity on the fracture toughness of aluminium alloys has not been extensively studied, and little attention has been paid due to its complexity, understanding of its behaviour, and difficulty in predicting the effect of the combined factors. Therefore, the present study aims to address this knowledge gap and improve the understanding of the interdependencies between the coupled effects of temperature and humidity on the fracture toughness of Al-Mg-Si-Mn alloy, which can have practical implications for the selection and design of materials in coastal environments. Fracture toughness experiments were carried out by simulating the coastal environments, such as localised corrosion, temperature, and humidity, using compact tension specimens. The fracture toughness increased with varying temperatures from 20 to 80 °C and decreased with variable humidity levels between 40% and 90%, revealing Al-Mg-Si-Mn alloy is susceptible to corrosive environments. Using a curve-fitting approach that mapped the micrographs to temperature and humidity conditions, an empirical model was developed, which revealed that the interaction between temperature and humidity was complex and followed a nonlinear interaction supported by microstructure images of SEM and collected empirical data.

4.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772118

RESUMO

Machine learning has the potential to enhance damage detection and prediction in materials science. Machine learning also has the ability to produce highly reliable and accurate representations, which can improve the detection and prediction of damage compared to the traditional knowledge-based approaches. These approaches can be used for a wide range of applications, including material design; predicting material properties; identifying hidden relationships; and classifying microstructures, defects, and damage. However, researchers must carefully consider the appropriateness of various machine learning algorithms, based on the available data, material being studied, and desired knowledge outcomes. In addition, the interpretability of certain machine learning models can be a limitation in materials science, as it may be difficult to understand the reasoning behind predictions. This paper aims to make novel contributions to the field of material engineering by analyzing the compatibility of dynamic response data from various material structures with prominent machine learning approaches. The purpose of this is to help researchers choose models that are both effective and understandable, while also enhancing their understanding of the model's predictions. To achieve this, this paper analyzed the requirements and characteristics of commonly used machine learning algorithms for crack propagation in materials. This analysis assisted the authors in selecting machine learning algorithms (K nearest neighbor, Ridge, and Lasso regression) to evaluate the dynamic response of aluminum and ABS materials, using experimental data from previous studies to train the models. The results showed that natural frequency was the most significant predictor for ABS material, while temperature, natural frequency, and amplitude were the most important predictors for aluminum. Crack location along samples had no significant impact on either material. Future work could involve applying the discussed techniques to a wider range of materials under dynamic loading conditions.

5.
Sensors (Basel) ; 22(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684804

RESUMO

Smart maintenance is essential to achieving a safe and reliable railway, but traditional maintenance deployment is costly and heavily human-involved. Ineffective job execution or failure in preventive maintenance can lead to railway service disruption and unsafe operations. The deployment of robotic and autonomous systems was proposed to conduct these maintenance tasks with higher accuracy and reliability. In order for these systems to be capable of detecting rail flaws along millions of mileages they must register their location with higher accuracy. A prerequisite of an autonomous vehicle is its possessing a high degree of accuracy in terms of its positional awareness. This paper first reviews the importance and demands of preventive maintenance in railway networks and the related techniques. Furthermore, this paper investigates the strategies, techniques, architecture, and references used by different systems to resolve the location along the railway network. Additionally, this paper discusses the advantages and applicability of on-board-based and infrastructure-based sensing, respectively. Finally, this paper analyses the uncertainties which contribute to a vehicle's position error and influence on positioning accuracy and reliability with corresponding technique solutions. This study therefore provides an overall direction for the development of further autonomous track-based system designs and methods to deal with the challenges faced in the railway network.


Assuntos
Ferrovias , Robótica , Humanos , Reprodutibilidade dos Testes
6.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161760

RESUMO

Discrete particle dynamics is one of the least understood aspects of river bedload transport, but in situ measurement of stone movement during floods poses a significant technical challenge. A promising approach to address this knowledge gap is to use sensors embedded within stones. Sensors must be waterproof and recoverable after being transported downstream and potentially buried by other sediment. To address this challenge rugged sensors (Kinematic Loggers) were developed for deployment inside stones (ranging in size from cobbles to boulders) during floods. The sensors feature a 9-axis inertial measurement unit, 3-axis high-g accelerometer, 128 MB flash memory, and a 433 MHz LoRa radio transmission module for sensor recovery. The sensors are enclosed in rugged waterproof housings for deployment in extreme conditions (i.e., bedload transport during floods). Novel relay units and drone-based recovery systems were also developed for finding the sensors after field deployments. Firmware to control the sensors and relay units was developed, as well as software for configuring the sensors and an android application for communicating with the sensors via the LoRa radio transmission module. This paper covers the technical development of the sensors, mounting them inside stones, and field recovery tests. Although designed for measurement of coarse bedload transport and particle dynamics during floods, the sensors are equally applicable for deployment in other harsh environments, such as to study landslide and rockfall dynamics.


Assuntos
Inundações , Rios , Aceleração , Fenômenos Biomecânicos , Software
7.
Sensors (Basel) ; 21(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530407

RESUMO

Damage is an inevitable occurrence in metallic structures and when unchecked could result in a catastrophic breakdown of structural assets. Non-destructive evaluation (NDE) is adopted in industries for assessment and health inspection of structural assets. Prominent among the NDE techniques is guided wave ultrasonic testing (GWUT). This method is cost-effective and possesses an enormous capability for long-range inspection of corroded structures, detection of sundries of crack and other metallic damage structures at low frequency and energy attenuation. However, the parametric features of the GWUT are affected by structural and environmental operating conditions and result in masking damage signal. Most studies focused on identifying individual damage under varying conditions while combined damage phenomena can coexist in structure and hasten its deterioration. Hence, it is an impending task to study the effect of combined damage on a structure under varying conditions and correlate it with GWUT parametric features. In this respect, this work reviewed the literature on UGWs, damage inspection, severity, temperature influence on the guided wave and parametric characteristics of the inspecting wave. The review is limited to the piezoelectric transduction unit. It was keenly observed that no significant work had been done to correlate the parametric feature of GWUT with combined damage effect under varying conditions. It is therefore proposed to investigate this impending task.

8.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266048

RESUMO

Accurate damage detection in engineering structures is a critical part of structural health monitoring. A variety of non-destructive inspection methods has been employed to detect the presence and severity of the damage. In this research, machine learning (ML) algorithms are used to assess the dynamic response of the system. It can predict the damage severity, damage location, and fundamental behaviour of the system. Fatigue damage data of aluminium and ABS under coupled mechanical loads at different temperatures are used to train the model. The model shows that natural frequency and temperature appear to be the most important predictive features for aluminium. It appears to be dominated by natural frequency and tip amplitude for ABS. The results also show that the position of the crack along the specimen appears to be of little importance for either material, allowing simultaneous prediction of location and damage severity.

9.
Sensors (Basel) ; 20(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899391

RESUMO

Unverified or counterfeited electronic components pose a big threat globally because they could lead to malfunction of safety-critical systems and reduced reliability of high-hazard assets. The current inspection techniques are either expensive or slow, which becomes the bottleneck of large volume inspection. As a complement of the existing inspection capabilities, a pulsed thermography-based screening technique is proposed in this paper using a digital twin methodology. A FEM-based simulation unit is initially developed to simulate the internal structure of electronic components with deviations of multiple physical properties, informed by X-ray data, along with its thermal behaviour under exposure to instantaneous heat. A dedicated physical inspection unit is then integrated to verify the simulation unit and further improve the simulation by taking account of various uncertainties caused by equipment and samples. Principle component analysis is used for feature extraction, and then a set of machine learning-based classifiers are employed for quantitative classification. Evaluation results of 17 chips from different sources successfully demonstrate the effectiveness of the proposed technique.

10.
Sensors (Basel) ; 18(3)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534052

RESUMO

The final phase of powder production typically involves a mixing process where all of the particles are combined and agglomerated with a binder to form a single compound. The traditional means of inspecting the physical properties of the final product involves an inspection of the particle sizes using an offline sieving and weighing process. The main downside of this technique, in addition to being an offline-only measurement procedure, is its inability to characterise large agglomerates of powders due to sieve blockage. This work assesses the feasibility of a real-time monitoring approach using a benchtop test rig and a prototype acoustic-based measurement approach to provide information that can be correlated to product quality and provide the opportunity for future process optimisation. Acoustic emission (AE) was chosen as the sensing method due to its low cost, simple setup process, and ease of implementation. The performance of the proposed method was assessed in a series of experiments where the offline quality check results were compared to the AE-based real-time estimations using data acquired from a benchtop powder free flow rig. A designed time domain based signal processing method was used to extract particle size information from the acquired AE signal and the results show that this technique is capable of estimating the required ratio in the washing powder compound with an average absolute error of 6%.

11.
Sensors (Basel) ; 8(2): 784-799, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-27879734

RESUMO

With increasing demands for wireless sensing nodes for assets control and condition monitoring; needs for alternatives to expensive conventional accelerometers in vibration measurements have been arisen. Micro-Electro Mechanical Systems (MEMS) accelerometer is one of the available options. The performances of three of the MEMS accelerometers from different manufacturers are investigated in this paper and compared to a well calibrated commercial accelerometer used as a reference for MEMS sensors performance evaluation. Tests were performed on a real CNC machine in a typical industrial environmental workshop and the achieved results are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA