Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Res Sq ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38645256

RESUMO

Background: Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders. Methods: Ten children and young adults with DCP and disabling movement disorders with or without spasticity will undergo bilateral DBS in the dorsal dentate nucleus, with the most distal contact ending in the superior cerebellar peduncle. We will implant Medtronic Percept, a bidirectional neurostimulator that can sense and store brain activity and deliver DBS therapy. The efficacy of cerebellar DBS in improving quality of life and motor outcomes will be tested by a series of N-of-1 clinical trials. Each N-of-1 trial will consist of three blocks, each consisting of one month of effective stimulation and one month of sham stimulation in a random order with weekly motor and quality of life scales as primary and secondary outcomes. In addition, we will characterize abnormal patterns of cerebellar oscillatory activity measured by local field potentials from the intracranial electrodes related to clinical assessments and wearable monitors. Pre- and 12-month postoperative volumetric structural and functional MRI and diffusion tensor imaging will be used to identify candidate imaging markers of baseline disease severity and response to DBS. Discussion: Our goal is to test a cerebellar neuromodulation therapy that produces meaningful changes in function and well-being for people with CP, obtain a mechanistic understanding of the underlying brain network disorder, and identify physiological and imaging-based predictors of outcomes useful in planning further studies. Trial registration: ClinicalTrials.gov NCT06122675, first registered November 7, 2023.

3.
Front Hum Neurosci ; 18: 1320806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450221

RESUMO

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St. Louis, Missouri. He presented his research recently published in Nature inn a collaboration with Dr. Evan Gordon to identify and characterize the somato-cognitive action network (SCAN), which has redefined the motor homunculus and has led to new hypotheses about the integrative networks underpinning therapeutic DBS. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers, and researchers (from industry and academia) can freely discuss current and emerging DBS technologies, as well as logistical and ethical issues facing the field. The group estimated that globally more than 263,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. This year's meeting was focused on advances in the following areas: cutting-edge translational neuromodulation, cutting-edge physiology, advances in neuromodulation from Europe and Asia, neuroethical dilemmas, artificial intelligence and computational modeling, time scales in DBS for mood disorders, and advances in future neuromodulation devices.

4.
Parkinsonism Relat Disord ; 122: 106089, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460490

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus (GP) is an established therapy for Parkinson's disease (PD). Novel DBS devices can record local field potential (LFP) physiomarkers from the STN or GP. While beta (13-30 Hz) and gamma (40-90 Hz) STN and GP LFP oscillations correlate with PD motor severity and with therapeutic effects of treatments, STN-GP interactions in electrophysiology in patients with PD are not well characterized. METHODS: Simultaneous bilateral STN and GP LFPs were recorded in a patient with PD who received bilateral STN-DBS and GP-DBS. Power spectra in each target and STN-GP coherence were assessed in various ON- and OFF-levodopa and DBS states, both at rest and with voluntary movement. RESULTS: OFF-levodopa and OFF-DBS, beta peaks were present at bilateral STN and GP, coincident with prominent STN-GP beta coherence. Levodopa and dual-target-DBS (simultaneous STN-DBS and GP-DBS) completely suppressed STN-GP coherence. Finely-tuned gamma (FTG) activity at half the stimulation frequency (62.5 Hz) was seen in the STN during GP-DBS at rest. To assess the effects of movement on FTG activity, we recorded LFPs during instructed movement. We observed FTG activity in bilateral GP and bilateral STN during contralateral body movements while on GP-DBS and ON-levodopa. No FTG was seen with STN-DBS or dual-target-DBS. CONCLUSION: Dual-target-DBS and levodopa suppressed STN-GP coherence. FTG throughout the basal ganglia was induced by GP-DBS in the presence of levodopa and movement. This bilateral STN-FTG and GP-FTG corresponded with the least severe bradykinesia state, suggesting a pro-kinetic role for FTG.


Assuntos
Estimulação Encefálica Profunda , Globo Pálido , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Pessoa de Meia-Idade , Levodopa/farmacologia , Levodopa/administração & dosagem , Antiparkinsonianos/uso terapêutico , Idoso , Feminino
5.
Nat Commun ; 15(1): 1793, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413587

RESUMO

Sleep disturbance is a prevalent and disabling comorbidity in Parkinson's disease (PD). We performed multi-night (n = 57) at-home intracranial recordings from electrocorticography and subcortical electrodes using sensing-enabled Deep Brain Stimulation (DBS), paired with portable polysomnography in four PD participants and one with cervical dystonia (clinical trial: NCT03582891). Cortico-basal activity in delta increased and in beta decreased during NREM (N2 + N3) versus wakefulness in PD. DBS caused further elevation in cortical delta and decrease in alpha and low-beta compared to DBS OFF state. Our primary outcome demonstrated an inverse interaction between subcortical beta and cortical slow-wave during NREM. Our secondary outcome revealed subcortical beta increases prior to spontaneous awakenings in PD. We classified NREM vs. wakefulness with high accuracy in both traditional (30 s: 92.6 ± 1.7%) and rapid (5 s: 88.3 ± 2.1%) data epochs of intracranial signals. Our findings elucidate sleep neurophysiology and impacts of DBS on sleep in PD informing adaptive DBS for sleep dysfunction.


Assuntos
Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Sono/fisiologia , Polissonografia , Eletrocorticografia
6.
Nat Neurosci ; 27(3): 573-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388734

RESUMO

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Humanos , Encéfalo , Córtex Motor/fisiologia , Doença de Parkinson/terapia , Mapeamento Encefálico
8.
Brain ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195196

RESUMO

In Parkinson's disease, imbalances between "antikinetic" and "prokinetic" patterns of neuronal oscillatory activity are related to motor dysfunction. Invasive brain recordings from the motor network have suggested that medical or surgical therapy can promote a prokinetic state by inducing narrowband gamma rhythms (65-90 Hz). Excessive narrowband gamma in the motor cortex promotes dyskinesia in rodent models, but the relationship between narrowband gamma and dyskinesia in humans has not been well established. To assess this relationship, we used a sensing-enabled deep brain stimulator system, attached to both motor cortex and basal ganglia (subthalamic or pallidal) leads, paired with wearable devices that continuously tracked motor signs in the contralateral upper limbs. We recorded 984 hours of multisite field potentials in 30 hemispheres of 16 subjects with Parkinson's disease (2/16 female, mean age 57 ± 12 years) while at home on usual antiparkinsonian medications. Recordings were done two to four weeks after implantation, prior to starting therapeutic stimulation. Narrowband gamma was detected in the precentral gyrus, subthalamic nucleus, or both structures on at least one side of 92% of subjects with a clinical history of dyskinesia. Narrowband gamma was not detected in the globus pallidus. Narrowband gamma spectral power in both structures co-fluctuated similarly with contralateral wearable dyskinesia scores (mean correlation coefficient of ρ=0.48 with a range of 0.12-0.82 for cortex, ρ=0.53 with a range of 0.5-0.77 for subthalamic nucleus). Stratification analysis showed the correlations were not driven by outlier values, and narrowband gamma could distinguish "on" periods with dyskinesia from "on" periods without dyskinesia. Time lag comparisons confirmed that gamma oscillations herald dyskinesia onset without a time lag in either structure when using 2-minute epochs. A linear model incorporating the three oscillatory bands (beta, theta/alpha, and narrowband gamma) increased the predictive power of dyskinesia for several subject hemispheres. We further identified spectrally distinct oscillations in the low gamma range (40-60 Hz) in three subjects, but the relationship of low gamma oscillations to dyskinesia was variable. Our findings support the hypothesis that excessive oscillatory activity at 65-90 Hz in the motor network tracks with dyskinesia similarly across both structures, without a detectable time lag. This rhythm may serve as a promising control signal for closed-loop deep brain stimulation using either cortical or subthalamic detection.

10.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106063

RESUMO

Choosing whether to exert effort to obtain rewards is fundamental to human motivated behavior. However, the neural dynamics underlying the evaluation of reward and effort in humans is poorly understood. Here, we investigate this with chronic intracranial recordings from prefrontal cortex (PFC) and basal ganglia (BG; subthalamic nuclei and globus pallidus) in people with Parkinson's disease performing a decision-making task with offers that varied in levels of reward and physical effort required. This revealed dissociable neural signatures of reward and effort, with BG beta (12-20 Hz) oscillations tracking subjective effort on a single trial basis and PFC theta (4-7 Hz) signaling previous trial reward. Stimulation of PFC increased overall acceptance of offers in addition to increasing the impact of reward on choices. This work uncovers oscillatory mechanisms that guide fundamental decisions to exert effort for reward across BG and PFC, as well as supporting a causal role of PFC for such choices.

11.
Nat Med ; 29(11): 2854-2865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37932548

RESUMO

People with late-stage Parkinson's disease (PD) often suffer from debilitating locomotor deficits that are resistant to currently available therapies. To alleviate these deficits, we developed a neuroprosthesis operating in closed loop that targets the dorsal root entry zones innervating lumbosacral segments to reproduce the natural spatiotemporal activation of the lumbosacral spinal cord during walking. We first developed this neuroprosthesis in a non-human primate model that replicates locomotor deficits due to PD. This neuroprosthesis not only alleviated locomotor deficits but also restored skilled walking in this model. We then implanted the neuroprosthesis in a 62-year-old male with a 30-year history of PD who presented with severe gait impairments and frequent falls that were medically refractory to currently available therapies. We found that the neuroprosthesis interacted synergistically with deep brain stimulation of the subthalamic nucleus and dopaminergic replacement therapies to alleviate asymmetry and promote longer steps, improve balance and reduce freezing of gait. This neuroprosthesis opens new perspectives to reduce the severity of locomotor deficits in people with PD.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Masculino , Animais , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Marcha/fisiologia , Medula Espinal
12.
Brain Stimul ; 16(5): 1412-1424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37683763

RESUMO

OBJECTIVES: The exact mechanisms of deep brain stimulation (DBS) are still an active area of investigation, in spite of its clinical successes. This is due in part to the lack of understanding of the effects of stimulation on neuronal rhythms. Entrainment of brain oscillations has been hypothesised as a potential mechanism of neuromodulation. A better understanding of entrainment might further inform existing methods of continuous DBS, and help refine algorithms for adaptive methods. The purpose of this study is to develop and test a theoretical framework to predict entrainment of cortical rhythms to DBS across a wide range of stimulation parameters. MATERIALS AND METHODS: We fit a model of interacting neural populations to selected features characterising PD patients' off-stimulation finely-tuned gamma rhythm recorded through electrocorticography. Using the fitted models, we predict basal ganglia DBS parameters that would result in 1:2 entrainment, a special case of sub-harmonic entrainment observed in patients and predicted by theory. RESULTS: We show that the neural circuit models fitted to patient data exhibit 1:2 entrainment when stimulation is provided across a range of stimulation parameters. Furthermore, we verify key features of the region of 1:2 entrainment in the stimulation frequency/amplitude space with follow-up recordings from the same patients, such as the loss of 1:2 entrainment above certain stimulation amplitudes. CONCLUSION: Our results reveal that continuous, constant frequency DBS in patients may lead to nonlinear patterns of neuronal entrainment across stimulation parameters, and that these responses can be predicted by modelling. Should entrainment prove to be an important mechanism of therapeutic stimulation, our modelling framework may reduce the parameter space that clinicians must consider when programming devices for optimal benefit.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Gânglios da Base , Modalidades de Fisioterapia , Eletrocorticografia
13.
Front Hum Neurosci ; 17: 1212963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635808

RESUMO

Introduction: Stepping and arm swing are stereotyped movements that require coordination across multiple muscle groups. It is not known whether the encoding of these stereotyped movements in the human primary motor cortex is confined to the limbs' respective somatotopy. Methods: We recorded subdural electrocorticography activities from the hand/arm area in the primary motor cortex of 6 subjects undergoing deep brain stimulation surgery for essential tremor and Parkinson's disease who performed stepping (all patients) and arm swing (n = 3 patients) tasks. Results: We show stepping-related low frequency oscillations over the arm area. Furthermore, we show that this oscillatory activity is separable, both in frequency and spatial domains, from gamma band activity changes that occur during arm swing. Discussion: Our study contributes to the growing body of evidence that lower extremity movement may be more broadly represented in the motor cortex, and suggest that it may represent a way to coordinate stereotyped movements across the upper and lower extremities.

14.
medRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37649907

RESUMO

Deep brain stimulation is a widely used therapy for Parkinson's disease (PD) but currently lacks dynamic responsiveness to changing clinical and neural states. Feedback control has the potential to improve therapeutic effectiveness, but optimal control strategy and additional benefits of "adaptive" neurostimulation are unclear. We implemented adaptive subthalamic nucleus stimulation, controlled by subthalamic or cortical signals, in three PD patients (five hemispheres) during normal daily life. We identified neurophysiological biomarkers of residual motor fluctuations using data-driven analyses of field potentials over a wide frequency range and varying stimulation amplitudes. Narrowband gamma oscillations (65-70 Hz) at either site emerged as the best control signal for sensing during stimulation. A blinded, randomized trial demonstrated improved motor symptoms and quality of life compared to clinically optimized standard stimulation. Our approach highlights the promise of personalized adaptive neurostimulation based on data-driven selection of control signals and may be applied to other neurological disorders.

15.
Brain Stimul ; 16(4): 990-998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37330169

RESUMO

BACKGROUND: There has been substantial controversy in the neuroethics literature regarding the extent to which deep brain stimulation (DBS) impacts dimensions of personality, mood, and behavior. OBJECTIVE/HYPOTHESIS: Despite extensive debate in the theoretical literature, there remains a paucity of empirical data available to support or refute claims related to the psychosocial changes following DBS. METHODS: A mixed-methods approach was used to examine the perspectives of patients who underwent DBS regarding changes to their personality, authenticity, autonomy, risk-taking, and overall quality of life. RESULTS: Patients (n = 21) who were enrolled in adaptive DBS trials for Parkinson's disease, essential tremor, obsessive-compulsive disorder, Tourette's syndrome, or dystonia participated. Qualitative data revealed that participants, in general, reported positive experiences with alterations in what was described as 'personality, mood, and behavior changes.' The majority of participants reported increases in quality of life. No participants reported 'regretting the decision to undergo DBS.' CONCLUSION(S): The findings from this patient sample do not support the narrative that DBS results in substantial adverse changes to dimensions of personality, mood, and behavior. Changes reported as "negative" or "undesired" were few in number, and transient in nature.


Assuntos
Estimulação Encefálica Profunda , Distonia , Tremor Essencial , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Distonia/terapia , Tremor Essencial/terapia , Doença de Parkinson/terapia , Doença de Parkinson/psicologia , Qualidade de Vida
16.
Nat Neurosci ; 26(6): 1090-1099, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217725

RESUMO

Chronic pain syndromes are often refractory to treatment and cause substantial suffering and disability. Pain severity is often measured through subjective report, while objective biomarkers that may guide diagnosis and treatment are lacking. Also, which brain activity underlies chronic pain on clinically relevant timescales, or how this relates to acute pain, remains unclear. Here four individuals with refractory neuropathic pain were implanted with chronic intracranial electrodes in the anterior cingulate cortex and orbitofrontal cortex (OFC). Participants reported pain metrics coincident with ambulatory, direct neural recordings obtained multiple times daily over months. We successfully predicted intraindividual chronic pain severity scores from neural activity with high sensitivity using machine learning methods. Chronic pain decoding relied on sustained power changes from the OFC, which tended to differ from transient patterns of activity associated with acute, evoked pain states during a task. Thus, intracranial OFC signals can be used to predict spontaneous, chronic pain state in patients.


Assuntos
Dor Crônica , Humanos , Dor Crônica/diagnóstico , Eletrodos Implantados , Córtex Pré-Frontal/fisiologia , Giro do Cíngulo
17.
medRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36945497

RESUMO

Frontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregate the frontal cortex into circuits that became dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to rostral, ranging from interconnections with sensorimotor cortices in dystonia, with the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairment in the human brain.

18.
J Neurosurg ; 139(3): 605-614, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36789999

RESUMO

OBJECTIVE: Cerebral palsy (CP) represents the most common childhood physical disability that encompasses disorders of movement and posture attributed to nonprogressive disturbances that occurred in the developmental fetal or infant brain. Dyskinetic CP (DCP), the second most common type of CP after spastic forms, refers to a subset of patients in whom dystonia and choreoathetosis are the predominant motor manifestations. Most children with CP have abnormal brain MRI studies indicative of cortical and deep gray matter damage consistent with hypoxic ischemic encephalopathy, which may preclude or suggest decreased efficacy of standard deep brain stimulation (DBS) targets. The cerebellum has been posited as an attractive target for treatment of DCP because it is frequently spared from hypoxic ischemic damage and has shown promise in alleviating patient symptoms both in early work in the 1970s and in more recent case series with DBS. METHODS: The authors performed bilateral cerebellar DBS implantation, targeting the dentate nucleus (DN) and cerebellar outflow pathway, in 3 patients with DCP. Leads were connected to a pulse generator that senses local field potentials during chronic continuous DBS. The authors report their surgical methods, examples of chronic cerebellar local field potential recordings, and preliminary clinical outcomes. Motor outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale. RESULTS: Three patients 14-22 years old with DCP and MRI evidence of structural damage to the basal ganglia were offered cerebellar stimulation targeting the DN. All patients tolerated the procedure well and demonstrated improvement in subjective motor function as well as objective improvement in the Burke-Fahn-Marsden Dystonia Rating Scale movement subscale, although the range of responses was variable (19%-40%). Patients experienced subjective improvement in motor function including ease of hand movements and coordination, gait, head control, speech, decreased overflow, and diminished muscle tightness. CONCLUSIONS: DBS of the dentate nuclei in patients with DCP appears to be safe and shows preliminary evidence of clinical benefit. New chronic sensing technology may allow for determination of in vivo mechanisms of network disruption in DCP and allow for further understanding of the effects of neuromodulation on brain physiology. Larger studies with long-term follow up will be required to further elucidate the clinical benefits of this therapy. This report addresses a gap in the literature regarding the technical approach to image-based stereotactic targeting and chronic neural recording in the DN.


Assuntos
Paralisia Cerebral , Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Paralisia Cerebral/complicações , Paralisia Cerebral/terapia , Distonia/etiologia , Estimulação Encefálica Profunda/métodos , Globo Pálido/cirurgia , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/terapia , Cerebelo/diagnóstico por imagem , Resultado do Tratamento
19.
Stereotact Funct Neurosurg ; 101(2): 112-134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809747

RESUMO

BACKGROUND: Deep brain stimulation has become an established technology for the treatment of patients with a wide variety of conditions, including movement disorders, psychiatric disorders, epilepsy, and pain. Surgery for implantation of DBS devices has enhanced our understanding of human physiology, which in turn has led to advances in DBS technology. Our group has previously published on these advances, proposed future developments, and examined evolving indications for DBS. SUMMARY: The crucial roles of structural MR imaging pre-, intra-, and post-DBS procedure in target visualization and confirmation of targeting are described, with discussion of new MR sequences and higher field strength MRI enabling direct visualization of brain targets. The incorporation of functional and connectivity imaging in procedural workup and their contribution to anatomical modelling is reviewed. Various tools for targeting and implanting electrodes, including frame-based, frameless, and robot-assisted, are surveyed, and their pros and cons are described. Updates on brain atlases and various software used for planning target coordinates and trajectories are presented. The pros and cons of asleep versus awake surgery are discussed. The role and value of microelectrode recording and local field potentials are described, as well as the role of intraoperative stimulation. Technical aspects of novel electrode designs and implantable pulse generators are presented and compared.


Assuntos
Neoplasias Encefálicas , Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/cirurgia , Vigília , Imageamento por Ressonância Magnética , Microeletrodos , Eletrodos Implantados
20.
Front Hum Neurosci ; 17: 1339340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38384668

RESUMO

Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) has been used to treat refractory obsessive-compulsive disorder (OCD) and depression, but outcomes are variable, with some patients not responding to this form of invasive neuromodulation. A lack of benefit in some patients may be due to suboptimal positioning of DBS leads. Recently, studies have suggested that specific white matter tracts within the ALIC are associated with improved outcomes. Here, we present the case of a patient who initially had a modest improvement in OCD and depressive symptoms after receiving DBS within the ALIC. Subsequently, he underwent unilateral DBS lead repositioning informed by tractography targeting the ventrolateral and medial prefrontal cortex's connection with the mediodorsal thalamus. In this patient, we also conducted post-implant and post-repositioning diffusion imaging and found that we could successfully perform tractography even with DBS leads in place. Following lead repositioning into tracts predictive of benefit, the patient reached responder criteria for his OCD, and his depression was remitted. This case illustrates that tractography can potentially be used in the evaluation and planning of lead repositioning to achieve therapeutic outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...