Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(3-2): 035201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632718

RESUMO

Accurate modeling of warm and hot dense matter is challenging in part due to the multitude of excited states that must be considered. Here, we present a variational framework that models these excited states. In this framework an excited state is defined by a set of effective one-electron occupation factors, and the corresponding energy is defined by the effective one-body energy with an exchange and correlation term. The variational framework is applied to an atom-in-plasma model (a generalization of the so-called average atom model). Comparisons with a density functional theory based average atom model generally reveal good agreement in the calculated pressure, but our model also gives access to the excitation energies and charge state distributions.

2.
Phys Rev E ; 107(2-2): 025204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932529

RESUMO

In plasmas, electronic states can be well-localized bound states or itinerant free states, or something in between. In self-consistent treatments of plasma electronic structure such as the average-atom model, all states must be accurately resolved in order to achieve a converged numerical solution. This is a challenging numerical and algorithmic problem in large part due to the continuum of free states which is relatively expensive and difficult to resolve accurately. Siegert states are an appealing alternative. They form a complete eigenbasis with a purely discrete spectrum while still being equivalent to a representation in terms of the usual bound states and free states. However, many of their properties are unintuitive, and it is not obvious that they are suitable for self-consistent plasma electronic structure calculations. Here it is demonstrated that Siegert states can be used to accurately solve an average-atom model and offer advantages over the traditional finite-difference approach, including a concrete physical picture of pressure ionization and continuum resonances.

3.
Phys Rev E ; 104(5-2): 055208, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942703

RESUMO

The effect of ionic disorder on the principal Hugoniot is investigated using multiple scattering theory to very high pressure (Gbar). Calculations using molecular dynamics to simulate ionic disorder are compared to those with a fixed crystal lattice, for both carbon and aluminum. For the range of conditions considered here we find that ionic disorder has a relatively minor influence. It is most important at the onset of shell ionization and we find that, at higher pressures, the subtle effect of the ionic environment is overwhelmed by the larger number of ionized electrons with higher thermal energies.

4.
Phys Rev E ; 103(4-1): 043206, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005858

RESUMO

We focus on studying the opacity of iron, chromium, and nickel plasmas at conditions relevant to experiments carried out at Sandia National Laboratories [J. E. Bailey et al., Nature (London) 517, 56 (2015)NATUAS0028-083610.1038/nature14048]. We calculate the photoabsorption cross sections and subsequent opacity for plasmas using linear-response time-dependent density functional theory (TD-DFT). Our results indicate that the physics of channel mixing accounted for in linear-response TD-DFT leads to an increase in the opacity in the bound-free quasicontinuum, where the Sandia experiments indicate that models underpredict iron opacity. However, the increase seen in our calculations is only in the range of 5%-10%. Further, we do not see any change in this trend for chromium and nickel. This behavior indicates that channel mixing effects do not explain the trends in opacity observed in the Sandia experiments.

5.
Phys Rev E ; 102(4-1): 043211, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212669

RESUMO

Dense plasmas occur in stars, giant planets, and in inertial fusion experiments. Accurate modeling of the electronic structure of these plasmas allows for prediction of material properties that can in turn be used to simulate these astrophysical objects and terrestrial experiments. But modeling them remains a challenge. Here we explore the Korringa-Kohn-Rostoker Green's function (KKR-GF) method for this purpose. We find that it is able to predict equation of state in good agreement with other state-of-the-art methods, where they are accurate and viable. In addition, it is shown that the computational cost does not significantly change with temperature, in contrast with other approaches. Moreover, the method does not use pseudopotentials-core states are calculated self consistently. We conclude that KKR-GF is a very promising method for dense plasma simulation.

6.
Phys Rev E ; 97(5-1): 053205, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906853

RESUMO

Modeling high-temperature (tens or hundreds of eV), dense plasmas is challenging due to the multitude of non-negligible physical effects including significant partial ionization and multisite effects. These effects cause the breakdown or intractability of common methods and approximations used at low temperatures, such as pseudopotentials or plane-wave basis sets. Here we explore the Korringa-Kohn-Rostoker Green's function method at these high-temperature conditions. The method is all electron, does not rely on pseudopotentials, and uses a spherical harmonic basis set, and so avoids the aforementioned limitations. It is found to be accurate for solid density aluminum and iron plasmas when compared to a plane-wave method at low temperature, while being able to access high temperatures.

7.
Phys Rev E ; 96(1-1): 013206, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347227

RESUMO

The Thomas-Fermi model for warm and hot dense matter is widely used to predict material properties such as the equation of state. However, for practical reasons current implementations use pseudopotentials for the electron-nucleus interaction instead of the bare Coulomb potential. This complicates the calculation and quantities such as free energy cannot be converged with respect to the pseudopotential parameters. We present a method that retains the bare Coulomb potential for the electron-nucleus interaction and does not use pseudopotentials. We demonstrate that accurate free energies are obtained by checking variational consistency. Examples for aluminum and iron plasmas are presented.

8.
Phys Rev E ; 93(6): 063206, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27415376

RESUMO

We present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)PLEEE81539-375510.1103/PhysRevE.91.013104]. While the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method is validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26465569

RESUMO

The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)]10.1038/nphoton.2015.41 with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1-100 eV and densities of 2.7-8.1g/cm^{3}. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]PRLTAO0031-900710.1103/PhysRevLett.110.065001. We also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26172810

RESUMO

The ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture-equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

11.
Artigo em Inglês | MEDLINE | ID: mdl-25679720

RESUMO

An approach to simulating warm and hot dense matter that combines density-functional-theory-based calculations of the electronic structure to classical molecular dynamics simulations with pair interaction potentials is presented. The method, which we call pseudoatom molecular dynamics, can be applied to single-component or multicomponent plasmas. It gives equation of state and self-diffusion coefficients with an accuracy comparable to orbital-free molecular dynamics simulations but is computationally much more efficient.

12.
Artigo em Inglês | MEDLINE | ID: mdl-25353587

RESUMO

We present calculations of x-ray scattering spectra based on ionic and electronic structure factors that are computed from a new model for warm dense matter. In this model, which has no free parameters, the ionic structure is determined consistently with the electronic structure of the bound and free states. The x-ray scattering spectrum is thus fully determined by the plasma temperature, density and nuclear charge, and the experimental parameters. The combined model of warm dense matter and of the x-ray scattering theory is validated against an experiment on room-temperature, solid beryllium. It is then applied to experiments on warm dense beryllium and aluminum. Generally good agreement is found with the experiments. However, some significant discrepancies are revealed and appraised. Based on the strength of our model, we discuss the current state of x-ray scattering experiments on warm dense matter and their potential to determine plasma parameters, to discriminate among models, and to reveal interesting and difficult to model physics in dense plasmas.


Assuntos
Algoritmos , Modelos Químicos , Gases em Plasma/química , Gases em Plasma/efeitos da radiação , Espectrometria por Raios X/métodos , Simulação por Computador , Elétrons
13.
Artigo em Inglês | MEDLINE | ID: mdl-25314550

RESUMO

In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.


Assuntos
Carbono/química , Temperatura Alta , Hidrogênio/química , Simulação de Dinâmica Molecular , Elétrons , Teoria Quântica
14.
Artigo em Inglês | MEDLINE | ID: mdl-23410443

RESUMO

The results of a numerical implementation of the recent average atom model including ion-ion correlations of Starrett and Saumon [Phys. Rev. E 85, 026403 (2012)] are presented. The solution is obtained by coupling an average atom model to a two-component plasma model of electrons and ions. The two models are solved self-consistently and results are given in the form of pair distribution functions. Ion-ion pair distribution functions for hydrogen, carbon, aluminum, and iron are compared to quantum and Thomas-Fermi molecular dynamics simulations as well as path-integral Monte Carlo calculations and good agreement is found for a wide variety of plasma conditions in the warm and hot dense matter regime.


Assuntos
Algoritmos , Íons/química , Modelos Químicos , Gases em Plasma/química , Simulação por Computador , Transporte de Elétrons
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026403, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22463333

RESUMO

An average atom model for dense ionized fluids that includes ion correlations is presented. The model assumes spherical symmetry and is based on density functional theory, the integral equations for uniform fluids, and a variational principle applied to the grand potential. Starting from density functional theory for a mixture of classical ions and quantum mechanical electrons, an approximate grand potential is developed, with an external field being created by a central nucleus fixed at the origin. Minimization of this grand potential with respect to electron and ion densities is carried out, resulting in equations for effective interaction potentials. A third condition resulting from minimizing the grand potential with respect to the average ion charge determines the noninteracting electron chemical potential. This system is coupled to a system of point ions and electrons with an ion fixed at the origin, and a closed set of equations is obtained. Solution of these equations results in a self-consistent electronic and ionic structure for the plasma as well as the average ionization, which is continuous as a function of temperature and density. Other average atom models are recovered by application of simplifying assumptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...