Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124978

RESUMO

This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Bialobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Bialobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota.


Assuntos
Antioxidantes , Cannabis , Fármacos Neuroprotetores , Extratos Vegetais , Prebióticos , Cannabis/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Canabinoides/química , Canabinoides/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000045

RESUMO

Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.


Assuntos
Produtos Biológicos , Neoplasias , Protetores contra Radiação , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Protetores contra Radiação/uso terapêutico , Protetores contra Radiação/farmacologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Animais
3.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931002

RESUMO

Chronic wound treatments pose a challenge for healthcare worldwide, particularly for the people in developed countries. Chronic wounds significantly impair quality of life, especially among the elderly. Current research is devoted to novel approaches to wound care by repositioning cardiovascular agents for topical wound treatment. The emerging field of medicinal products' repurposing, which involves redirecting existing pharmaceuticals to new therapeutic uses, is a promising strategy. Recent studies suggest that medicinal products such as sartans, beta-blockers, and statins have unexplored potential, exhibiting multifaceted pharmacological properties that extend beyond their primary indications. The purpose of this review is to analyze the current state of knowledge on the repositioning of cardiovascular agents' use and their molecular mechanisms in the context of wound healing.


Assuntos
Fármacos Cardiovasculares , Reposicionamento de Medicamentos , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Animais
4.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891938

RESUMO

Neurological disorders present a wide range of symptoms and challenges in diagnosis and treatment. Cannabis sativa, with its diverse chemical composition, offers potential therapeutic benefits due to its anticonvulsive, analgesic, anti-inflammatory, and neuroprotective properties. Beyond cannabinoids, cannabis contains terpenes and polyphenols, which synergistically enhance its pharmacological effects. Various administration routes, including vaporization, oral ingestion, sublingual, and rectal, provide flexibility in treatment delivery. This review shows the therapeutic efficacy of cannabis in managing neurological disorders such as epilepsy, neurodegenerative diseases, neurodevelopmental disorders, psychiatric disorders, and painful pathologies. Drawing from surveys, patient studies, and clinical trials, it highlights the potential of cannabis in alleviating symptoms, slowing disease progression, and improving overall quality of life for patients. Understanding the diverse therapeutic mechanisms of cannabis can open up possibilities for using this plant for individual patient needs.


Assuntos
Cannabis , Epilepsia , Doenças Neurodegenerativas , Humanos , Cannabis/química , Doenças Neurodegenerativas/tratamento farmacológico , Epilepsia/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Animais , Dor/tratamento farmacológico , Anticonvulsivantes/uso terapêutico , Canabinoides/uso terapêutico , Canabinoides/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Analgésicos/uso terapêutico , Analgésicos/química , Analgésicos/farmacologia
5.
Antibiotics (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667045

RESUMO

The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-ß-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects. As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficile, Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus pyrogenes, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL-1 to <10 CFU mL-1 in most cases). Additionally, for the system with hydroxypropyl-ß-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus, Lactobacillus reuteri, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104-107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.

6.
Antioxidants (Basel) ; 12(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37891906

RESUMO

Cannabis sativa, a versatile plant with numerous varieties, holds promising potential for a wide range of biological activity. As raw materials for research, we chose leaves and inflorescences of hemp varieties such as Bialobrzeskie, Henola, and Tygra, which are cultivated mainly for their fibers or seeds. The choice of extraction is a key step in obtaining the selected compositions of active compounds from plant material. Bearing in mind the lipophilic nature of cannabinoids, we performed supercritical carbon dioxide (scCO2) extraction at 50 °C under 2000 (a) and 6000 PSI (b). The cannabinoid contents were determined with the use of the HPLC-DAD method. The antioxidant capabilities were assessed through a series of procedures, including the DPPH, ABTS, CUPRAC, and FRAP methods. The capacity to inhibit enzymes that play a role in the progression of neurodegenerative diseases, such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase was also studied. The dominant cannabinoids in the extracts were cannabidiol (CBD) and cannabidiolic acid (CBDA). The highest concentration of eight cannabinoids was detected in the Tygra inflorescences extract (b). The most notable antioxidant properties were provided by the Tygra inflorescences extract (b). Nonetheless, it was the Henola inflorescences extract (b) that demonstrated the most efficient inhibition of AChE and BChE, and tyrosinase was inhibited the most significantly by the Bialobrzeskie inflorescences extract (b). Multidimensional comparative analysis enrolled all assays and revealed that the Henola inflorescences extract (b) showed the most substantial neuroprotective potential.

7.
Pharmaceutics ; 15(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37765249

RESUMO

Cannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabichromene (CBC) are lipophilic compounds with limited water solubility, resulting in challenges related to their bioavailability and therapeutic efficacy upon oral administration. To overcome these limitations, we developed co-dispersion cannabinoid delivery systems with the biopolymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) and magnesium aluminometasilicate (Neusilin US2) to improve solubility and permeability. Recognizing the potential therapeutic benefits arising from the entourage effect, we decided to work with an extract instead of isolated cannabinoids. Cannabis sativa inflorescences (Henola variety) with a confirming neuroprotective activity were subjected to dynamic supercritical CO2 (scCO2) extraction and next they were combined with carriers (1:1 mass ratio) to prepare the co-dispersion cannabinoid delivery systems (HiE). In vitro dissolution studies were conducted to evaluate the solubility of CBD, CBDA, and CBC in various media (pH 1.2, 6.8, fasted, and fed state simulated intestinal fluid). The HiE-Soluplus delivery systems consistently demonstrated the highest dissolution rate of cannabinoids. Additionally, HiE-Soluplus exhibited the highest permeability coefficients for cannabinoids in gastrointestinal tract conditions than it was during the permeability studies using model PAMPA GIT. All three cannabinoids exhibited promising blood-brain barrier (BBB) permeability (Papp higher than 4.0 × 10-6 cm/s), suggesting their potential to effectively cross into the central nervous system. The improved solubility and permeability of cannabinoids from the HiE-Soluplus delivery system hold promise for enhancement in their bioavailability.

8.
Antioxidants (Basel) ; 12(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37760025

RESUMO

Lupuli flos shows many biological activities like antioxidant potential, extended by a targeted effect on selected enzymes, the expression of which is characteristic for neurodegenerative changes within the nervous system. Lupuli flos extracts (LFE) were prepared by supercritical carbon dioxide (scCO2) extraction with various pressure and temperature parameters. The antioxidant, chelating activity, and inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase by extracts were studied. The extracts containing ethanol were used as references. The most beneficial neuroprotective effects were shown by the extract obtained under 5000 PSI and 50 °C. The neuroprotective effect of active compounds is limited by poor solubility; therefore, carriers with solubilizing properties were used for scCO2 extracts, combined with post-scCO2 ethanol extract. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in combination with magnesium aluminometasilicate (Neusilin US2) in the ratio 1:0.5 improved dissolution profiles to the greatest extent, while the apparent permeability coefficients of these compounds determined using the parallel artificial membrane permeability assay in the gastrointestinal (PAMPA GIT) model were increased the most by only HP-ß-CD.

9.
Antioxidants (Basel) ; 12(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37507928

RESUMO

Cannabis leaves contain a diverse range of antioxidants, including cannabinoids, flavonoids, and phenolic compounds, which offer significant health benefits. Utilising cannabis leaves as a source of antioxidants presents a cost-effective approach because they are typically discarded during the cultivation of cannabis plants for their seeds or fibres. Therefore, this presented study aimed to assess the antioxidant activity of the leaves of selected hemp cultivars, such as Bialobrzeska, Tygra, and Henola, based on the results obtained with the 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ferric reducing antioxidant power, cupric reducing antioxidant capacity, and 2,2-Diphenyl-1-picrylhydrazyl assays. The cannabinoid profile was analysed for the antioxidant activity to the contents of cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabinol (Δ9-THC), and cannabichromene (CBC), determined based on chromatographic assays. The following variables were tested: the impact of various extractants (methanol, ethanol, and isopropanol), and their mixtures (50:50, v/v, as well as extraction methods (maceration and ultra-sound-assisted extraction) significant in obtaining hemp extracts characterised by different cannabinoid profiles. The results revealed that the selection of extractant and extraction conditions significantly influenced the active compounds' extraction efficiency and antioxidant activity. Among the tested conditions, ultrasound-assisted extraction using methanol yielded the highest cannabinoid profile: CBD = 184.51 ± 5.61; CBG = 6.10 ± 0.21; Δ9-THC = 0.51 ± 0.01; and CBC = 0.71 ± 0.01 µg/g antioxidant potential in Bialobrzeska leaf extracts.

10.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298169

RESUMO

The proven anti-neurodegenerative properties of caffeic acid in vivo are limited due to its poor solubility, which limits bioavailability. Therefore, caffeic acid delivery systems have been developed to improve caffeic acid solubility. Solid dispersions of caffeic acid and magnesium aluminometasilicate (Neusilin US2-Neu) were prepared using the ball milling and freeze-drying techniques. The solid dispersions of caffeic acid:Neu obtained by ball milling in a 1:1 mass ratio turned out to be the most effective. The identity of the studied system in comparison to the physical mixture was confirmed using the X-Ray Powder Diffractionand Fourier-transform infrared spectroscopy techniques. For caffeic acid with improved solubility, screening tests were carried out to assess its anti-neurodegenerative effect. The obtained results on the inhibition of acetylcholinesterase, butyrylcholinesterase, tyrosinase, and antioxidant potential provide evidence for improvement of caffeic acid's anti-neurodegenerative activity. As a result of in silico studies, we estimated which caffeic acid domains were involved in interactions with enzymes showing expression relevant to the neuroprotective activity. Importantly, the confirmed improvement in permeability of the soluble version of caffeic acid through membranes simulating the walls of the gastrointestinal tract and blood-brain barrier further strengthen the credibility of the results of in vivo anti-neurodegenerative screening tests.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Solubilidade , Composição de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria , Difração de Raios X
11.
Pharmaceutics ; 14(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36297533

RESUMO

Rosmarinic acid (RA) is a natural antioxidant with neuroprotective properties; however, its preventive and therapeutic use is limited due to its slight solubility and poor permeability. This study aimed to improve RA physicochemical properties by systems formation with cyclodextrins (CDs): hydroxypropyl-α-CD (HP-α-CD), HP-ß-CD, and HP-γ-CD, which were prepared by the solvent evaporation (s.e.) method. The interactions between components were determined by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and Fourier Transform infrared spectroscopy (FTIR). The sites of interaction between RA and CDs were suggested as a result of in silico studies focused on assessing the interaction between molecules. The impact of amorphous systems formation on water solubility, dissolution rate, gastrointestinal (GIT) permeability, and biological activity was studied. RA solubility was increased from 5.869 mg/mL to 113.027 mg/mL, 179.840 mg/mL, and 194.354 mg/mL by systems formation with HP-α-CD, HP-ß-CD, and HP-γ-CD, respectively. During apparent solubility studies, the systems provided an acceleration of RA dissolution. Poor RA GIT permeability at pH 4.5 and 5.8, determined by parallel artificial membrane permeability assay (PAMPA system), was increased; RA-HP-γ-CD s.e. indicated the greatest improvement (at pH 4.5 from Papp 6.901 × 10-7 cm/s to 1.085 × 10-6 cm/s and at pH 5.8 from 5.019 × 10-7 cm/s to 9.680 × 10-7 cm/s). Antioxidant activity, which was determined by DPPH, ABTS, CUPRAC, and FRAP methods, was ameliorated by systems; the greatest results were obtained for RA-HP-γ-CD s.e. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) was increased from 36.876% for AChE and 13.68% for BChE to a maximum inhibition of the enzyme (plateau), and enabled reaching IC50 values for both enzymes by all systems. CDs are efficient excipients for improving RA physicochemical and biological properties. HP-γ-CD was the greatest one with potential for future food or dietary supplement applications.

12.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054939

RESUMO

BACKGROUND: Naringenin (NAR) is a flavonoid with excellent antioxidant and neuroprotective potential that is limited by its low solubility. Thus, solid dispersions with ß-cyclodextrin (ß-CD), hydroxypropyl-ß-cyclodextrin (HP-ß-CD), hydroxypropylmethylcellulose (HPMC), and microenvironmental pH modifiers were prepared. METHODS: The systems formation analysis was performed by X-Ray Powder Diffraction (XRPD) and Fourier-transform infrared spectroscopy (FT-IR). Water solubility and dissolution rates were studied with a pH of 1.2 and 6.8. In vitro permeability through the gastrointestinal tract (GIT) and the blood-brain barrier (BBB) was assessed with the parallel artificial membrane permeability assay (PAMPA) assay. The antioxidant activity was studied with the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and cupric ion reducing antioxidant capacity (CUPRAC) assays, while in vitro enzymes studies involved the inhibition of acetylcholinesterase, butyrylcholinesterase, and tyrosinase. For the most promising system, in silico studies were conducted. RESULTS: NAR solubility was increased 458-fold by the solid dispersion NAR:HP-ß-CD:NaHCO3 in a mass ratio of 1:3:1. The dissolution rate was elevated from 8.216% to 88.712% in a pH of 1.2 and from 11.644% to 88.843% in a pH of 6.8 (within 3 h). NAR GIT permeability, described as the apparent permeability coefficient, was increased from 2.789 × 10-6 cm s-1 to 2.909 × 10-5 cm s-1 in an acidic pH and from 1.197 × 10-6 cm s-1 to 2.145 × 10-5 cm s-1 in a basic pH. NAR BBB permeability was established as 4.275 × 10-6 cm s-1. The antioxidant activity and enzyme inhibition were also increased. Computational studies confirmed NAR:HP-ß-CD inclusion complex formation. CONCLUSIONS: A significant improvement in NAR solubility was associated with an increase in its biological activity.


Assuntos
Antioxidantes/farmacologia , Flavanonas/farmacologia , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Antioxidantes/química , Antioxidantes/uso terapêutico , Permeabilidade da Membrana Celular , Fenômenos Químicos , Composição de Medicamentos , Flavanonas/química , Flavanonas/uso terapêutico , Cinética , Modelos Moleculares , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Permeabilidade , Solubilidade , Análise Espectral , Relação Estrutura-Atividade
13.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885515

RESUMO

Losartan potassium is most commonly used for the treatment of hypertension. In recent years, new applications of this drug have emerged, encouraging the design of novel nanoporous carriers for its adsorption and release. The purpose of this study was to synthesize ordered mesoporous carbon vehicles via a soft-templating method altered with the use of nitrogen precursors and via a hard-templating method followed by chitosan functionalization. As a result, the materials obtained differed in nitrogen content as well as in the number of total surface functional groups. The impact of the modification on the physicochemical properties of carbon carriers and their interaction with losartan potassium during adsorption and release processes was examined. The materials were characterized by various morphologies, specific surface areas (101-1180 m2 g-1), and the amount of acidic/basic oxygen-containing functional groups (1.26-4.27 mmol g-1). These features, along with pore sizes and volumes, had a key effect on the sorption capacity of carbon carriers towards losartan potassium (59-161 mg g-1). Moreover, they contributed to the differential release of the drug (18.56-90.46%). Losartan potassium adsorption onto the surface of carbonaceous materials was mainly based on the formation of hydrogen bonds and π-π interactions and followed the Langmuir type isotherm. It has been shown that the choice of the method of carbon carriers' synthesis and their modification allows for the precise control of the kinetics of the losartan potassium release from their surface, resulting in rapid or sustained drug liberation.

14.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681943

RESUMO

Glioblastoma (GBM) is an extremely aggressive brain tumor awaiting novel, efficient, and minimally toxic treatment. Curcuminoids (CCM), polyphenols from Curcuma longa, and sodium butyrate (NaBu), a histone deacetylase inhibitor naturally occurring in the human body, await elucidation as potential anti-GBM agents. Thus, the aim of this study was to analyze CCM and NaBu both separately and as a combination treatment using three GBM cell lines. MTT was used for cytotoxicity evaluation, and the combination index was calculated for synergism prediction. Cell cycle, apoptosis, and reactive oxygen species (ROS) generation were analyzed using flow cytometry. DNA methylation was verified by MS-HRM and mRNA expression by qPCR. The permeability through the blood-brain barrier (BBB) and through the nasal cavity was evaluated using PAMPA model. The results of this study indicate that CCM and NaBu synergistically reduce the viability of GBM cells inducing apoptosis and cell cycle arrest. These effects are mediated via ROS generation and changes in gene expression, including upregulation of Wnt/ß-catenin pathway antagonists, SFRP1, and RUNX3, and downregulation of UHRF1, the key epigenetic regulator. Moreover, NaBu ameliorated CCM permeability through the BBB and the nasal cavity. We conclude that CCM and NaBu are promising agents with anti-GBM properties.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Ácido Butírico/farmacologia , Diarileptanoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Apoptose , Ciclo Celular , Movimento Celular , Proliferação de Células , Quimioterapia Combinada , Glioblastoma/metabolismo , Glioblastoma/patologia , Antagonistas dos Receptores Histamínicos/farmacologia , Humanos , Células Tumorais Cultivadas , Proteína Wnt1/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA