Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(8): e202400069, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38358389

RESUMO

Given its wide variety of applications in the pharmaceutical industry, the synthesis of imidazo[1,2-a]pyridines has been extensively studied since the beginning of the last century. Here, we disclose the mechanism for the synthesis of imidazo[1,2-a]pyridines by means of the Ortoleva-King reaction. We also reveal the reaction pathway leading to the formation of a iodinated byproduct, demonstrating the challenge of preventing the formation of such a byproduct because of the low energy barrier to access it. Moreover, quantum chemistry tools were employed to investigate the mechanism of intramolecular proton transfer in the excited state, and connections with aromaticity were explored.

2.
Acc Chem Res ; 57(1): 37-46, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103043

RESUMO

ConspectusPhotoinduced electron transfer (PET) in carbon materials is a process of great importance in light energy conversion. Carbon materials, such as fullerenes, graphene flakes, carbon nanotubes, and cycloparaphenylenes (CPPs), have unusual electronic properties that make them interesting objects for PET research. These materials can be used as electron-hole transport layers, electrode materials, or passivation additives in photovoltaic devices. Moreover, their appropriate combination opens up new possibilities for constructing photoactive supramolecular systems with efficient charge transfer between the donor and acceptor parts. CPPs build a class of molecules consisting of para-linked phenylene rings. CPPs and their numerous derivatives are appealing building blocks in supramolecular chemistry, acting as suitable concave receptors with strong host-guest interactions for the convex surfaces of fullerenes. Efficient PET in donor-acceptor systems can be observed when charge separation occurs faster than charge recombination. This Account focuses on selected inclusion complexes of carbon nanohoops studied by our group. We modeled charge separation and charge recombination in both previously synthesized and computationally designed complexes to identify how various modifications of host and guest molecules affect the PET efficiency in these systems. A consistent computational protocol we used includes a time-dependent density-functional theory (TD-DFT) formalism with the Tamm-Dancoff approximation (TDA) and CAM-B3LYP functional to carry out excited state calculations and the nonadiabatic electron transfer theory to estimate electron-transfer rates. We show how the photophysical properties of carbon nanohoops can be modified by incorporating additional π-conjugated fragments and antiaromatic units, multiple fluorine substitutions, and extending the overall π-electron system. Incorporating π-conjugated groups or linkers is accompanied by the appearance of new charge transfer states. Perfluorination of the nanohoops radically changes their role in charge separation from an electron donor to an electron acceptor. Vacancy defects in π-extended nanohoops are shown to hinder PET between host and guest molecules, while large fully conjugated π-systems improve the electron-donor properties of nanohoops. We also highlight the role of antiaromatic structural units in tuning the electronic properties of nanohoops. Depending on the aromaticity degree of monomeric units in nanohoops, the direction of electron transfer in their complexes with C60 fullerene can be altered. Nanohoops with aromatic units usually act as electron donors, while those with antiaromatic monomers serve as electron acceptors. Finally, we discuss why charged fullerenes are better electron acceptors than neutral C60 and how the charge location allows for the design of more efficient donor-acceptor systems with an unusual hypsochromic shift of the charge transfer band in polar solvents.

3.
J Org Chem ; 88(9): 5875-5892, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37070610

RESUMO

Acylation of benzo[c][1,2,5]thiadiazole-4,7-diamine and 2-hexyl-2H-benzo[d][1,2,3]triazole-4,7-diamine with aromatic acid halides furnished the corresponding N,N'-diamides, which were converted into N,N'-dithioamides by reacting with Lawesson's reagent. A method was developed for the preparation of previously unknown fused systems, dithiazolobenzo[1,2-c][1,2,5]thiadiazoles and dithiazolobenzo[1,2-d][1,2,3]triazoles, by oxidative photochemical cyclization of N,N'-dithioamides. The photophysical and (spectro)electrochemical properties of the obtained compounds and their polymer films electrochemically deposited on ITO were studied. The optical contrast and response time of the synthesized oligomers were determined. The results obtained allow us to consider these substances as promising candidates for electrochromic devices.

4.
Chemistry ; 29(35): e202300503, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37002639

RESUMO

An approach to modulating the properties of carbon nanorings by incorporating pyrrolo[3,2-b]pyrrole units is of particular interest due to the combined effect of heteroatom and antiaromatic character on electronic properties. The inclusion of units other than phenylene leads to the formation of stereoisomers. In this work, we computationally study how the spatial orientation of monomeric units in the ring affects the properties of cyclic dibenzopyrrolo[3,2-b]pyrroles and their complexes with C60 fullerene. For [4]PP and [4]DHPP, the most symmetrical AAAA isomer is the most stable and forms stronger interactions with fullerene than the isomers where one or two monomeric units are flipped, mostly due to less Pauli repulsion. π-Electron delocalization in the monomeric unit is crucial for directing the electron transfer (from or to nanoring). The energy of excited states with charge transfer depends on the HOMO-LUMO gap, which varies from one stereoisomer to another only for [4]DHPP⊃C60 with aromatic 1,4-dihydropyrrolo[3,2-b]pyrrole units. The rates of electron transfer and charge recombination reactions are relatively weakly dependent of the spatial isomerism of nanorings.


Assuntos
Fulerenos , Isomerismo , Transporte de Elétrons , Carbono , Pirróis
5.
J Org Chem ; 87(10): 6657-6667, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35522246

RESUMO

This article focuses on the development of practical approaches to the preparation of benzo[1,2-d:4,3-d']bis(thiazoles) using blue light-induced photochemical cyclization of N,N'-(1,4-aryl)dithioamides in the presence of p-chloranil as a mild oxidant. The proposed method allows to obtain benzo[1,2-d:4,3-d']bis(thiazoles) containing donor substituents in the conjugated chain. Photophysical and (spectro)electrochemical properties of 2,6-di([2,2'-bithiophen]-5-yl)benzo[1,2-d:4,3-d']bis(thiazole) and -benzo[1,2-d:4,5-d']bis(thiazole) are studied in detail. The properties of the synthesized compounds suggest their potential applications for organic electronics.

6.
Chemphyschem ; 23(16): e202200226, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35587716

RESUMO

Perfluorocycloparaphenylenes (PFCPPs) are cycloparaphenylenes (CPPs) in which all hydrogen atoms have been replaced by fluorine atoms. Like CPPs, PFCPPs are highly strained, hoop-shaped π-conjugated molecules. In this article, we report a computational modeling of photoinduced electron transfer processes in the inclusion complex of PF[10]CPP with C60 fullerene. Its unique feature is the favorable electron transfer from C60 to the host molecule. The photooxidation of C60 is predicted to occur on a sub-nanosecond timescale. The PF[10]CPP⊃C60 dyad is the first nanoring-fullerene complex in which C60 acts as an electron donor in the photoinduced charge separation.


Assuntos
Fulerenos , Transporte de Elétrons , Fulerenos/química , Oxirredução
7.
Angew Chem Int Ed Engl ; 61(7): e202112834, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34633126

RESUMO

The formation of supramolecular complexes between C60 and a molecular nanographene endowed with both positive and negative curvatures is described. The presence of a corannulene moiety and the saddle shape of the molecular nanographene allows the formation of complexes with 1:1, 1:2, and 2:1 stoichiometries. The association constants for the three possible supramolecular complexes were determined by 1 H NMR titration. Furthermore, the stability of the three complexes was calculated by theoretical methods that also predict the photoinduced electron transfer from the curved nanographene to the electron acceptor C60 . Time-resolved transient absorption measurements on the ns-time scale showed that the addition of C60 to NG-1 solutions and photo-exciting them at 460 nm leads to the solvent-dependent formation of new species, in particular the formation of the one-electron reduced form of C60 in benzonitrile was observed.

8.
Dalton Trans ; 51(1): 203-210, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34881384

RESUMO

The Diels-Alder cycloaddition reaction between 1,3-cyclohexadiene and a series of C60 fullerenes with encapsulated (super)alkali/(super)halogen species (Li+@C60, Li2F+@C60, Cl-@C60, and LiF2-@C60) was explored by means of DFT calculations. The reactivity of the ion encapsulating systems was compared to that of the parent C60 fullerene. Significant enhancement in reactivity was found for cation-encapsulating Li+/Li2F+@C60 complexes. The cycloadduct formed by LiF2-@C60 was found to be the most thermodynamically favorable among the studied ones. In contrast, encapsulation of Cl- anions disfavors the cycloaddition reaction both kinetically and thermodynamically. Higher activation energy barrier and less stability of the reaction product in the case of Cl-@C60 were associated with the higher deformation energies of the fullerene cage and the lower interaction energy between the reactants in comparison with the other studied complexes.

9.
JACS Au ; 1(10): 1601-1611, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723263

RESUMO

Well-defined fullerene-PEG conjugates, C60-PEG (1) and two C70-PEG (2 and 3 with the addition sites on ab-[6,6] and cc-[6,6]-junctions), were prepared from their corresponding Prato monoadduct precursors. The resulting highly water-soluble fullerene-PEG conjugates 1-3 were evaluated for their DNA-cleaving activities and reactive oxygen species (ROS) generation under visible light irradiation. Unexpectedly, photoinduced cleavage of DNA by C60-PEG 1 was much higher than that by C70-PEG 2 and 3 with higher absorption intensity, especially in the presence of an electron donor (NADH). The preference of photoinduced ROS generation from fullerene-PEG conjugates 1-3 via the type II (energy transfer) or the type I (electron transfer) photoreaction was found to be dependent on the fullerene core (between C60 and C70) and functionalization pattern of C70 (between 2 and 3). This was clearly supported by the electron transfer rate obtained from cyclic voltammetry data and computationally estimated relative rate of each step of the type II and the type I reactions, with the finding that type II energy transfer reactions occurred in the inverted Marcus regime while type I electron transfer reactions proceeded in the normal Marcus regime. This finding on the disparity in the pathways of photoinduced reactions (type I versus type II) provides insights into the behavior of photosensitizers in water and the design of photodynamic therapy drugs.

10.
Chemphyschem ; 22(12): 1178-1186, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33871156

RESUMO

Photoinduced electron transfer is studied in a series of inclusion complexes of structurally modified phenine nanotubes (pNT) with C70 using the TD-DFT method. Analysis of electronic properties of the complexes shows that the electron transfer is infeasible in pNT_4d⊃C70 built on the tetrameric array of [6]cyclo-meta-phenylene ([6]CMP) units. However, replacing one or more [6]CMP units with a coronene moiety enables electron transfer from pNT to C70 . The generation of the charge separated states from the lowest locally excited states occurs on a sub-nanosecond time scale. Depending on the number of the [6]CMP units, the charge recombination rate varies from 1.8 ⋅ 107 to 3.1 ⋅ 102  s-1 , i. e., five orders of magnitude.

11.
Chemistry ; 27(34): 8737-8744, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33780063

RESUMO

A number of non-covalently bound donor-acceptor dyads, consisting of C60 as the electron acceptor and cycloparaphenylene (CPP) as the electron donor, have been reported. A hypsochromic shift of the charge transfer (CT) band in polar medium has been found in [10]CPP⊃Li+ @C60 . To explore this anomalous effect, we study inclusion complexes [10]CPP⊃Li+ @C60 -MP, [10]CPP⊃C60 -MPH+ , and [10]CPP⊃C60 -PPyMe+ formed by fulleropyrrolidine derivatives and [10]CPP using the DFT/TDDFT approach. We show that the introduction of a positively charged fragment into fullerene stabilizes CT states that become the lowest-lying excited states. These charge-separated states can be generated by the decay of locally excited states on a nanosecond to picosecond time scale. The distance of the charged fragment to the center of the fullerenic cage and its accessibility to the solvent determine the strength of the hypsochromic shift.

12.
Chem Commun (Camb) ; 56(83): 12624-12627, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32959809

RESUMO

In this work, we computationally study the photoinduced electron transfer in fullerene inclusion complexes of two phenine nanotubes pre-pNT⊃C70 and pNT⊃C70 and their nanographene analog [4]CHBC⊃C70. Charge separation is shown to efficiently occur in [4]CHBC⊃C70. In contrast, the electron transfer process between the host and guest units in the pre-pNT⊃C70 and pNT⊃C70 complexes is blocked by the structural changes incorporated in the nanographene framework.

13.
J Org Chem ; 85(18): 11721-11731, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32820915

RESUMO

Functionalization of nanotubes with donor and acceptor partners by the Bingel reaction leads to the formation of charge-transfer dyads, which can operate in organic photovoltaic devices. In this work, we theoretically examine the mechanism of the Bingel reaction for the (6,5)-chiral, (5,5)-armchair, and (9,0)-zigzag single-walled carbon nanotubes (SWCNTs), and demonstrate that the reaction is regioselective and takes place at the perpendicular position of (6,5)- and (5,5)-SWCNTs, and the oblique position of (9,0)-SWCNT. Further, we design computationally the donor-acceptor complexes based on (6,5)-SWCNT coupled with partners of different electronic nature. Analysis of their excited states reveals that efficient photoinduced charge transfer can be achieved in the complexes with π-extended analogue of tetrathiafulvalene (exTTF), zinc tetraphenylporphyrin (ZnTPP), and tetracyanoanthraquinodimethane (TCAQ). The solvent can significantly affect the population of the charge-separated states. Our calculations show that electron transfer (ET) occurs in the normal Marcus regime on a sub-nanosecond time scale in the complexes with exTTF and ZnTPP, and in the inverted Marcus regime on a picosecond time scale in the case of the TCAQ derivative. The ET rate is found to be not very sensitive to the degree of functionalization of the nanotube.

14.
J Org Chem ; 85(15): 10072-10082, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643932

RESUMO

In this work, we describe the development of the rearrangement for 7-aryl-substituted oxazolo[5,4-b]pyridines treated with aluminum chloride into synthetically hard-to-reach benzo[c][1,7]naphthyridinones. The discovered rearrangement is applied to a variety of electron-rich (hetero)arene substrates. It offers the advantages of mild conditions (90 °C temperature), fast reaction rates (<4 h), compatibility with air moisture, and the use of inexpensive commercial reagents. The proposed reaction mechanism and key elementary reaction acts were studied in detail using quantum chemical calculations. The photophysical properties of the synthesized compounds were studied by steady-state UV-vis spectroscopy.

15.
Chemistry ; 26(47): 10896-10902, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32458434

RESUMO

A triquinoline cationic moiety (TQ⋅H+ ) has recently been designed as a novel molecular unit for supramolecular chemistry. In addition to some useful features, TQ⋅H+ has strong electron-acceptor properties, which renders the molecular cation a unique element in nanochemistry. TQ⋅H+ is found to form complexes with coronene (COR) and cycloparaphenylene (CPP). In this work, we report a computational study of photoinduced electron transfer in supramolecular complexes TQ⋅H+ -COR, TQ⋅H+ ⊂[12]CPP and (TQ⋅H+ -COR)⊂[12]CPP. The electron-transfer rates are estimated by using the semi-classical approach. The results are compared with the data previously obtained for a structurally similar inclusion complex Li+ @C60 ⊂[10]CPP. In particular, we found a red solvatochromic shift for charge-shift bands in the TQ⋅H+ -complexes unlike a blueshift showed by Li+ @C60 ⊂[10]CPP. This distinction is explored in terms of electronic and structural features of the systems.

16.
Chem Commun (Camb) ; 56(8): 1302, 2020 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-31942913

RESUMO

Correction for 'Cyclo[18]carbon: the smallest all-carbon electron acceptor' by Anton J. Stasyuk et al., Chem. Commun., 2020, 56, 352-355.

17.
Chem Commun (Camb) ; 56(3): 352-355, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825030

RESUMO

The recently synthesized C18 molecule demonstrates strong electron acceptor properties similar to C60. In this work, we study computationally the ground and excited state properties of C18 and its complexes with several electron-donating molecules. We demonstrate that a high amount of the exact (HF) exchange in the DFT functional leads to a polyynic structure of C18, in agreement with the experiment. We show that in complexes of C18 with electron donors, the lowest excited states are charge separated states formed by electron transfer to C18. This makes C18 the smallest all-carbon electron acceptor reported so far. Because C18 exhibits a larger internal reorganization energy compared to fullerene C60, the electron transfer reactions with relatively high driving force will be shifted from the inverted to the normal Marcus regime when replacing C60 by C18.

18.
Chem Commun (Camb) ; 55(75): 11195-11198, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31465052

RESUMO

In this work, we study computationally, using the DFT/TDDFT approach, the photoinduced electron transfer (PET) in CPP-based donor-acceptor supramolecules C60⊂[10]CPP and Li+@C60⊂[10]CPP. Based on the analysis of the excited states we find a system, Li+@C60⊂[10]CPP, which shows anomalous solvent effects, i.e., destabilization of charge separated states by polar medium.

19.
Angew Chem Int Ed Engl ; 58(21): 6932-6937, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30835927

RESUMO

The synthesis and characterization of a covalent all-fullerene C60 -Lu3 N@Ih -C80 electron donor-acceptor conjugate has been realized by sequential 1,3-dipolar cycloaddition reactions of azomethine ylides on Lu3 N@Ih -C80 and C60 . To the best of our knowledge, this is the first time that two fullerenes behaving as both electron donor (Lu3 N@Ih -C80 ) and acceptor (C60 ) are forming an electroactive dumbbell. DFT calculations reveal up to 16 diastereomeric pairs, that is, 8 with syn and 8 with anti orientation, with the anti-RSSS isomer being the most stable. Spectroelectrochemical absorption and femtosecond transient absorption experiments support the notion that a C60 ⋅- -Lu3 N@Ih -C80 ⋅+ charge-separated state is formed. Spin conversion from the charge-separated singlet state C60 ⋅- -Lu3 N@Ih -C80 ⋅+ into the corresponding triplet state is facilitated by the heavy-atom effect stemming from the Lu3 N-cluster, which, in turn, slows down the charge recombination by one order of magnitude.

20.
Phys Chem Chem Phys ; 20(36): 23328-23337, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30175838

RESUMO

We propose a new atomic-charge analysis, termed adjusted charge partitioning (ACP) scheme. To partition the molecular electronic density into atomic components, weighting factors cAr2n-2exp(-αAr) with atomic parameters cA and αA are used. Extensive numerical tests were performed for 540 molecules containing 17 main-group elements H, Li to F, Na to Cl, Br, and I. The estimated dipole moments and atomic charges are compared with the data provided by a large number of alternative atomic-charge schemes including the Mulliken, Löwdin, Hirshfeld, Hirshfeld Iterative, CM5, ESP, NPA, and QTAIM population analyses. These tests show that the resulting atomic charges are insensitive to basis sets used, chemically consistent and accurately reproduce experimental dipole moments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...