Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Environ Toxicol Pharmacol ; 107: 104398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403142

RESUMO

Ubiquitin Proteasomal System (UPS) and autophagy dysregulation initiate cancer. These pathways are regulated by zinc finger proteins. Trivalent inorganic arsenic (iAs) displaces zinc from zinc finger proteins disrupting functions of important cellular proteins. The effect of chronic environmental iAs exposure (100 nM) on UPS has not been studied. We tested the hypothesis that environmental iAs exposure suppresses UPS, activating autophagy as a compensatory mechanism. We exposed skin (HaCaT and Ker-CT; independent quadruplicates) and lung (BEAS-2B; independent triplicates) cell cultures to 0 or 100 nM iAs for 7 or 8 weeks. We quantified ER stress (XBP1 splicing employing Reverse Transcriptase -Polymerase Chain Reaction), proteasomal degradation (immunoblots), and initiation and completion of autophagy (immunoblots). We demonstrate that chronic iAs exposure suppresses UPS, initiates autophagy, but suppresses autophagic protein degradation in skin and lung cell lines. Our data suggest that chronic iAs exposure inhibits autophagy which subsequently suppresses UPS.


Assuntos
Arsênio , Arsenicais , Arsênio/toxicidade , Proteólise , Complexo de Endopeptidases do Proteassoma , Autofagia
2.
Toxicol Appl Pharmacol ; 484: 116865, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373578

RESUMO

Biological processes are inherently stochastic, i.e., are partially driven by hard to predict random probabilistic processes. Carcinogenesis is driven both by stochastic and deterministic (predictable non-random) changes. However, very few studies systematically examine the contribution of stochastic events leading to cancer development. In differential gene expression studies, the established data analysis paradigms incentivize expression changes that are uniformly different across the experimental versus control groups, introducing preferential inclusion of deterministic changes at the expense of stochastic processes that might also play a crucial role in the process of carcinogenesis. In this study, we applied simple computational techniques to quantify: (i) The impact of chronic arsenic (iAs) exposure as well as passaging time on stochastic gene expression and (ii) Which genes were expressed deterministically and which were expressed stochastically at each of the three stages of cancer development. Using biological coefficient of variation as an empirical measure of stochasticity we demonstrate that chronic iAs exposure consistently suppressed passaging related stochastic gene expression at multiple time points tested, selecting for a homogenous cell population that undergo transformation. Employing multiple balanced removal of outlier data, we show that chronic iAs exposure induced deterministic and stochastic changes in the expression of unique set of genes, that populate largely unique biological pathways. Together, our data unequivocally demonstrate that both deterministic and stochastic changes in transcriptome-wide expression are critical in driving biological processes, pathways and networks towards clonal selection, carcinogenesis, and tumor heterogeneity.


Assuntos
Arsênio , Humanos , Arsênio/toxicidade , Transcriptoma , Células HaCaT , Processos Estocásticos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética
4.
Toxicol Appl Pharmacol ; 479: 116730, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866707

RESUMO

Chronic arsenic exposure through drinking water is a global health issue, affecting >200 million people. Arsenic is a group I human carcinogen and causes chromosomal instability (CIN). Arsenic exposure is the second most common cause of skin cancer after UV radiation. hsa-miR-186 is overexpressed in arsenic-induced squamous cell carcinoma relative to premalignant hyperkeratosis. Among predicted targets of hsa-miR-186 are cell cycle regulators including regulators of mitotic progression. Disruption of mitotic progression can contribute to CIN. Thus, we hypothesized that hsa-miR-186 overexpression contributes to malignant transformation of arsenic exposed HaCaT cells by induction of CIN. Stable clones of HaCaT cells transfected with pEP-hsa-miR-186 expression vector or empty vector were maintained under puromycin selection and exposed to 0 or 100 nM NaAsO2 and cultured for 29 weeks. HaCaT clones overexpressing hsa-miR-186 and exposed to NaAsO2 showed increased CIN and anchorage independent growth at 29 weeks in a stochastic manner, in contrast to unexposed empty vector transfected clones. These results suggest that clonal variability mediates arsenic-induced carcinogenesis in hsa-miR-186 overexpressing human keratinocytes.


Assuntos
Arsênio , MicroRNAs , Humanos , Arsênio/toxicidade , Arsênio/metabolismo , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinogênese/genética , Queratinócitos/metabolismo , Células Clonais , Fenótipo , Instabilidade Cromossômica
5.
medRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808726

RESUMO

Community wastewater surveillance is an established means to measure health threats. Exposure to toxic metals as one of the key environmental contaminants has been attracting public health attention as exposure can be related to contamination across air, water, and soil as well as associated with individual factors. This research uses Jefferson County, Kentucky, as an urban exposome case study to analyze sub-county metal concentrations in wastewater as a possible indicator of community toxicant exposure risk, and to test the feasibility of using wastewater to identify potential community areas of elevated metals exposure. Variability in wastewater metal concentrations were observed across the county; 19 of the 26 sites had one or more metal results greater than one standard deviation above the mean and were designated areas of concern. Additionally, thirteen of the nineteen sites were of increased concern with levels greater than two standard deviations above the mean. This foundational research found variability in several instances between smaller nested upstream contributing neighborhood sewersheds when measured in the associated downstream treatment plant. Wastewater provides an opportunity to look at integrated toxicology to complement other toxicology data, looking at where people live and what toxicants need to be focused on to protect the health of people in that area.

6.
Adv Pharmacol ; 96: 203-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858773

RESUMO

Arsenic-induced carcinogenesis is a worldwide health problem. Identifying the molecular mechanisms responsible for the induction of arsenic-induced cancers is important for developing treatment strategies. MicroRNA (miRNA) dysregulation is known to affect development and progression of human cancer. Several studies have identified an association between altered miRNA expression in cancers from individuals chronically exposed to arsenic and in cell models for arsenic-induced carcinogenesis. This chapter provides a comprehensive review for miRNA dysregulation in arsenic-induced cancer.


Assuntos
Arsênio , MicroRNAs , Humanos , Carcinogênese
7.
Ecotoxicol Environ Saf ; 256: 114823, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989553

RESUMO

Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting >225 million people. Skin is a major target organ for iAs. miRNA dysregulation and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. CIN is a cancer hallmark and tetraploid cells can better tolerate increase in chromosome number and aberration, contributing to the evolution of CIN. miR-186 is overexpressed in iAs-induced squamous cell carcinoma relative to iAs-induced hyperkeratosis. Bioinformatic analysis indicated that miR-186 targets mRNAs of important cell cycle regulators including mitotic checkpoint serine/threonine kinase B (BUB1) and cell division cycle 27 (CDC27). We hypothesized that miR-186 overexpression contributes to iAs-induced transformation of keratinocytes by targeting mitotic regulators leading to induction of CIN. Ker-CT cells, a near diploid human keratinocyte cell line, were transduced with miR-186 overexpressing or scrambled control lentivirus. Stable clones were isolated after puromycin selection. Clones transduced with lentivirus expressing either a scrambled control miRNA or miR-186 were maintained with 0 or 100 nM iAs for 4 weeks. Unexposed scrambled control clones were considered as passage matched controls. Chronic iAs exposure increased miR-186 expression in miR-186 clones. miR-186 overexpression significantly reduced CDC27 levels irrespective of iAs exposure. The percentage of tetraploid or aneuploid cells was increased in iAs exposed miR-186 clones. Aneuploidy can arise from a tetraploid intermediate. Suppression of CDC27 by miR-186 may lead to impairment of mitotic checkpoint complex formation and its ability to maintain cell cycle arrest leading to chromosome misalignment. As a result, cells overexpressing miR-186 and chronically exposed to iAs may have incorrect chromosome segregation and CIN. These data suggest that dysregulation of miRNA by iAs mediates tetraploidy, aneuploidy and chromosomal instability contributing to iAs-induced carcinogenesis.


Assuntos
Arsênio , MicroRNAs , Humanos , Tetraploidia , MicroRNAs/genética , Aneuploidia , Carcinogênese , Queratinócitos , Instabilidade Cromossômica
8.
Exposome ; 3(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38550543

RESUMO

Environmental factors affecting health and vulnerability far outweigh genetics in accounting for disparities in health status and longevity in US communities. The concept of the exposome, the totality of exposure from conception onwards, provides a paradigm for researchers to investigate the complex role of the environment on the health of individuals. We propose a complementary framework, community-level exposomics, for population-level exposome assessment. The goal is to bring the exposome paradigm to research and practice on the health of populations, defined by various axes including geographic, social, and occupational. This framework includes the integration of community-level measures of the built, natural and social environments, environmental pollution-derived from conventional and community science approaches, internal markers of exposure that can be measured at the population-level and early responses associated with health status that can be tracked using population-based monitoring. Primary challenges to the implementation of the proposed framework include needed advancements in population-level measurement, lack of existing models with the capability to produce interpretable and actionable evidence and the ethical considerations of labeling geographically-bound populations by exposomic profiles. To address these challenges, we propose a set of recommendations that begin with greater engagement with and empowerment of affected communities and targeted investment in community-based solutions. Applications to urban settings and disaster epidemiology are discussed as examples for implementation.

9.
Toxicol Appl Pharmacol ; 454: 116255, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162444

RESUMO

Disrupted cell cycle progression underlies the molecular pathogenesis of multiple diseases. Chronic exposure to inorganic arsenic (iAs) is a global health issue leading to multi-organ cancerous and non-cancerous diseases. Exposure to supratherapeutic concentrations of iAs causes cellular accumulation in G2 or M phase of the cell cycle in multiple cell lines by inducing cyclin B1 expression. It is not clear if iAs exposure at doses corresponding to serum levels of chronically exposed populations (∼100 nM) has any effect on cell cycle distribution. In the present study we investigated if environmentally relevant iAs exposure induced cell cycle disruption and mechanisms thereof employing two human keratinocyte cell lines (HaCaT and Ker-CT), flow cytometry, immunoblots and quantitative real-time PCR (qRT-PCR). iAs exposure (100 nM; 24 h) led to mitotic accumulation of cells in both cell lines, along with the stabilization of ANAPC11 ubiquitination targets cyclin B1 and securin, without affecting their steady state mRNA levels. This result suggested that induction of cyclin B1 and securin is modulated at the level of protein degradation. Moreover, zinc supplementation successfully prevented iAs-induced mitotic accumulation and stabilization of cyclin B1 and securin without affecting their mRNA levels. Together, these data suggest that environmentally relevant iAs exposure leads to mitotic accumulation possibly by displacing zinc from the RING finger subunit of anaphase promoting complex/cyclosome (ANAPC11), the cell cycle regulating E3 ubiquitin ligase. This early cell cycle disruptive effect of environmentally relevant iAs concentration could underpin the molecular pathogenesis of multiple diseases associated with chronic iAs exposure.


Assuntos
Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase , Arsênio , Ciclossomo-Complexo Promotor de Anáfase , Arsênio/toxicidade , Linhagem Celular , Ciclina B1/genética , Suplementos Nutricionais , Humanos , Queratinócitos , RNA Mensageiro , Securina , Ubiquitina-Proteína Ligases , Zinco
10.
Environ Toxicol Pharmacol ; 94: 103921, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35764259

RESUMO

Environmentally relevant (100 nM) inorganic arsenic (iAs) exposure displaces zinc from zinc fingers of upstream splice regulator ZRANB2 disrupting the splicing of its target TRA2B. Excess zinc displaced iAs from ZRANB2 zinc fingers in cell free system. Thus, the hypothesis that zinc supplementation could prevent iAs-mediated disruption of ZRANB2 splice function in human keratinocytes was tested. The data show that zinc supplementation prevented iAs-induced dysregulation of TRA2B splicing by ZRANB2 as well as the induction of ZRANB2 protein expression. These results provide additional support for the hypothesis that zinc supplementation could prevent iAs-mediated disease in iAs-exposed populations.


Assuntos
Arsênio , Arsênio/metabolismo , Arsênio/toxicidade , Suplementos Nutricionais , Humanos , Proteínas de Ligação a RNA/metabolismo , Zinco/metabolismo , Zinco/farmacologia
11.
Toxicol Appl Pharmacol ; 446: 116042, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513056

RESUMO

An estimated 220 million people worldwide are chronically exposed to inorganic arsenic (iAs) primarily as a result of drinking iAs-contaminated water. Chronic iAs exposure is associated with a plethora of human diseases including skin lesions and multi-organ cancers. iAs is a known clastogen, inducing DNA double strand breaks (DSBs) in both exposed human populations and in vitro. However, iAs does not directly interact with DNA, suggesting that other mechanisms, such as inhibition of DNA repair and DNA Damage Response (DDR) signaling, may be responsible for iAs-induced clastogenesis. Recent RNA-sequencing data from human keratinocytes (HaCaT cells) indicate that mRNAs for phosphatases important for resolution of DDR signaling are induced as a result of chronic iAs exposure prior to epithelial to mesenchymal transition. Here, we report that phosphorylation of ataxia telengectasia mutated (ATM) protein at a critical site (pSer1981) important for DDR signaling, and downstream CHEK2 activation, are significantly reduced in two human keratinocyte lines as a result of chronic iAs exposure. Moreover, RAD50 expression is reduced in both of these lines, suggesting that suppression of the MRE11-RAD50-NBS1 (MRN) complex may be responsible for reduced ATM activation. Lastly, we demonstrate that DNA double strand break accumulation and DNA damage is significantly higher in human keratinocytes with low dose iAs exposure. Thus, inhibition of the MRN complex in iAs-exposed cells may be responsible for reduced ATM activation and reduced DSB repair by homologous recombination (HR). As a result, cells may favor error-prone DSB repair pathways to fix damaged DNA, predisposing them to chromosomal instability (CIN) and eventual carcinogenesis often seen resulting from chronic iAs exposure.


Assuntos
Arsênio , Proteínas Mutadas de Ataxia Telangiectasia , Queratinócitos , Arsênio/metabolismo , Arsênio/toxicidade , Ataxia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal , Humanos , Queratinócitos/metabolismo , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo
12.
Toxicol Sci ; 186(2): 177-178, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35348797
13.
Environ Health Perspect ; 130(1): 17011, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072517

RESUMO

BACKGROUND: Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE: This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS: Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS: At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION: These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.


Assuntos
Arsênio , Processamento Alternativo , Arsênio/metabolismo , Arsênio/toxicidade , Células HaCaT , Humanos , Queratinócitos/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteômica
14.
Toxicol Sci ; 185(2): 184-196, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34730829

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a major deleterious health effect of chronic arsenic (iAs) exposure. The molecular mechanism of arsenic-induced cSCC remains poorly understood. We recently demonstrated that chronic iAs exposure leads to temporally regulated genome-wide changes in profiles of differentially expressed mRNAs and miRNAs at each stage of carcinogenesis (7, 19, and 28 weeks) employing a well-established passage-matched HaCaT cell line model of arsenic-induced cSCC. Here, we performed longitudinal differential expression analysis (miRNA and mRNA) between the different time points (7 vs 19 weeks and 19 vs 28 weeks) within unexposed and exposed groups, coupled to expression pairing and pathway analyses to differentiate the relative effects of long-term passaging and chronic iAs exposure. Data showed that 66-105 miRNA [p < .05; log2(fold change) > I1I] and 2826-4079 mRNA [p < .001; log2(fold change) > I1I] molecules were differentially expressed depending on the longitudinal comparison. Several mRNA molecules differentially expressed as a function of time, independent of iAs exposure were being targeted by miRNA molecules which were also differentially expressed in a time-dependent manner. Distinct pathways were predicted to be modulated as a function of time or iAs exposure. Some pathways were also modulated both by time and exposure. Thus, the HaCaT model can distinguish between the effects of passaging and chronic iAs exposure individually and corroborate our previously published data on effects of iAs exposure compared with unexposed passage matched HaCaT cells. In addition, this work provides a template for cell line-based longitudinal chronic exposure studies to follow for optimal efficacy.


Assuntos
Arsênio , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Arsênio/toxicidade , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Células HaCaT , Humanos , Estudos Longitudinais , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética
15.
Semin Cancer Biol ; 76: 120-131, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979676

RESUMO

Genomic instability consists of a range of genetic alterations within the genome that contributes to tumor heterogeneity and drug resistance. It is a well-established characteristic of most cancer cells. Genome instability induction results from defects in DNA damage surveillance mechanisms, mitotic checkpoints and DNA repair machinery. Accumulation of genetic alterations ultimately sets cells towards malignant transformation. Recent studies suggest that miRNAs are key players in mediating genome instability. miRNAs are a class of small RNAs expressed in most somatic tissues and are part of the epigenome. Importantly, in many cancers, miRNA expression is dysregulated. Consequently, this review examines the role of miRNA dysregulation as a causal step for induction of genome instability and subsequent carcinogenesis. We focus specifically on mechanistic studies assessing miRNA(s) and specific subtypes of genome instability or known modes of genome instability. In addition, we provide insight on the existing knowledge gaps within the field and possible ways to address them.


Assuntos
Carcinogênese/genética , Reparo do DNA/genética , Instabilidade Genômica/genética , MicroRNAs/genética , Neoplasias/genética , Animais , Humanos
16.
Arch Toxicol ; 95(7): 2351-2365, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34032870

RESUMO

Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.


Assuntos
Arsênio , Carcinoma de Células Escamosas , MicroRNAs , Neoplasias Cutâneas , Arsênio/toxicidade , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
17.
Arch Toxicol ; 95(1): 311-319, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33136180

RESUMO

Exposure to alkylanilines found in tobacco smoke and indoor air is associated with risk of bladder cancer. Genetic factors significantly influence the metabolism of arylamine carcinogens and the toxicological outcomes that result from exposure. We utilized nucleotide excision repair (NER)-deficient immortalized human fibroblasts to examine the effects of human N-acetyltransferase 1 (NAT1), CYP1A2, and common rapid (NAT2*4) and slow (NAT2*5B or NAT2*7B) acetylator human N-acetyltransferase 2 (NAT2) haplotypes on environmental arylamine and alkylaniline metabolism. We constructed SV40-transformed human fibroblast cells that stably express human NAT2 alleles (NAT2*4, NAT2*5B, or NAT2*7B) and human CYP1A2. Human NAT1 and NAT2 apparent kinetic constants were determined following recombinant expression of human NAT1 and NAT2 in yeast for the arylamines benzidine, 4-aminobiphenyl (ABP), and 2-aminofluorene (2-AF), and the alkylanilines 2,5-dimethylaniline (DMA), 3,4-DMA, 3,5-DMA, 2-6-DMA, and 3-ethylaniline (EA) compared with those of the prototype NAT1-selective substrate p-aminobenzoic acid and NAT2-selective substrate sulfamethazine. Benzidine, 3,4-DMA, and 2-AF were preferential human NAT1 substrates, while 3,5-DMA, 2,5-DMA, 3-EA, and ABP were preferential human NAT2 substrates. Neither recombinant human NAT1 or NAT2 catalyzed the N-acetylation of 2,6-DMA. Among the alkylanilines, N-acetylation of 3,5-DMA was substantially higher in human fibroblasts stably expressing NAT2*4 versus NAT2*5B and NAT2*7B. The results provide important insight into the role of the NAT2 acetylator polymorphism (in the presence of competing NAT1 and CYP1A2-catalyzed N-acetylation and N-hydroxylation) on the metabolism of putative alkyaniline carcinogens. The N-acetylation of two alkylanilines associated with urinary bladder cancer (3-EA and 3,5-DMA) was modified by NAT2 acetylator polymorphism.


Assuntos
Aminas/metabolismo , Compostos de Anilina/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Carcinógenos/metabolismo , Fibroblastos/enzimologia , Variantes Farmacogenômicos , Acetilação , Aminas/toxicidade , Compostos de Anilina/toxicidade , Arilamina N-Acetiltransferase/genética , Carcinógenos/toxicidade , Linhagem Celular Transformada , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Haplótipos , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Medição de Risco , Especificidade por Substrato , Transfecção , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética
18.
Toxicol Appl Pharmacol ; 409: 115306, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127375

RESUMO

miRNAs (miRNA) are essential players regulating gene expression affecting cellular processes contributing to disease development. Dysregulated miRNA expression has been observed in numerous diseases including hepatitis, cardiovascular diseases and cancers. In cardiovascular diseases, several miRNAs function as mediators of pathogenic stress-related signaling pathways that may lead to an excessive extracellular matrix production and collagen deposition causing cardiac stress resulting in fibrosis. In cancers, many miRNAs function as oncogenes or tumor suppressors facilitating tumor growth, invasion and angiogenesis. Furthermore, the association between distinct miRNA profile and tumor development, progression and treatment response has identified miRNAs as potential biomarkers for disease diagnosis and prognosis. Growing evidence demonstrates changes in miRNA expression levels in experimental settings or observational studies associated with environmental chemical exposures such as arsenic. Arsenic is one of the most well-known human carcinogens. Long-term exposure through drinking water increases risk of developing skin, lung and urinary bladder cancers, as well as cardiovascular disease. The mechanism(s) by which arsenic causes disease remains elusive. Proposed mechanisms include miRNA dysregulation. Epidemiological studies identified differential miRNA expression between arsenic-exposed and non-exposed individuals from India, Bangladesh, China and Mexico. In vivo and in vitro studies have shown that miRNAs are critically involved in arsenic-induced malignant transformation. Few studies analyzed miRNAs in other diseases associated with arsenic exposure. Importantly, there is no consensus on a consistent miRNA profile for arsenic-induced cancers because most studies analyze only particular miRNAs. Identifying miRNA expression changes common among humans, rodents and cell lines might guide future miRNA investigations.


Assuntos
Arsênio/toxicidade , MicroRNAs/metabolismo , Neoplasias/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos
19.
Toxicol In Vitro ; 67: 104925, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32599262

RESUMO

The impacts of acute arsenic exposure (i.e. vomiting, diarrhea, and renal failure) are distinct from those brought about by sustained, low level exposure from environmental sources or drinking of contaminated well water. Chronic arsenic exposure is a risk factor for the development of pulmonary diseases, including lung cancer. How arsenic exposure leads to pulmonary disease is not fully understood. Both acute versus chronic arsenic exposure increase EGFR expression, but do so via distinct molecular mechanisms. BEAS-2B cells were exposed to either acute sodium arsenite (5 µM for 24 h) or chronic sodium arsenite (100 nM for 24 weeks). Cells treated with acute arsenic exhibited a decrease in viability, changes in morphology, and increased mRNA level of BTC. In contrast, during 24 weeks of arsenic exposure, the cells had increased EGFR expression and activity, and increased mRNA and protein levels of TGFα. Further, chronic arsenic treatment caused an increase in cell migration in the absence of exogenous ligand. Elevated TGFα and EGFR expression are features of many non-small cell lung cancers. We propose that lung epithelial cells chronically exposed to low level arsenic increases EGFR signaling via TGFα production to enhance ligand-independent cell migration.


Assuntos
Arsenitos/toxicidade , Células Epiteliais/efeitos dos fármacos , Compostos de Sódio/toxicidade , Fator de Crescimento Transformador beta/metabolismo , Brônquios/citologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Fator de Crescimento Transformador beta/genética
20.
Chem Res Toxicol ; 33(6): 1403-1417, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32274925

RESUMO

Exposure to arsenic, a class I carcinogen, affects 200 million people globally. Skin is the major target organ, but the molecular etiology of arsenic-induced skin carcinogenesis remains unclear. Arsenite (As3+)-induced disruption of alternative splicing could be involved, but the mechanism is unknown. Zinc finger proteins play key roles in alternative splicing. As3+ can displace zinc (Zn2+) from C3H1 and C4 zinc finger motifs (zfm's), affecting protein function. ZRANB2, an alternative splicing regulator with two C4 zfm's integral to its structure and splicing function, was chosen as a candidate for this study. We hypothesized that As3+ could displace Zn2+ from ZRANB2, altering its structure, expression, and splicing function. As3+/Zn2+ binding and mutual displacement experiments were performed with synthetic apo-peptides corresponding to each ZRANB2 zfm, employing a combination of intrinsic fluorescence, ultraviolet spectrophotometry, zinc colorimetric assay, and liquid chromatography-tandem mass spectrometry. ZRANB2 expression in HaCaT cells acutely exposed to As3+ (0 or 5 µM, 0-72 h; or 0-5 µM, 6 h) was examined by RT-qPCR and immunoblotting. ZRANB2-dependent splicing of TRA2B mRNA, a known ZRANB2 target, was monitored by reverse transcription-polymerase chain reaction. As3+ bound to, as well as displaced Zn2+ from, each zfm. Also, Zn2+ displaced As3+ from As3+-bound zfm's acutely, albeit transiently. As3+ exposure induced ZRANB2 protein expression between 3 and 24 h and at all exposures tested but not ZRANB2 mRNA expression. ZRANB2-directed TRA2B splicing was impaired between 3 and 24 h post-exposure. Furthermore, ZRANB2 splicing function was also compromised at all As3+ exposures, starting at 100 nm. We conclude that As3+ exposure displaces Zn2+ from ZRANB2 zfm's, changing its structure and compromising splicing of its targets, and increases ZRANB2 protein expression as a homeostatic response both at environmental/toxicological exposures and therapeutically relevant doses.


Assuntos
Arsenitos/toxicidade , Poluentes Ambientais/toxicidade , Proteínas de Ligação a RNA/metabolismo , Zinco/metabolismo , Processamento Alternativo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...