Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432970

RESUMO

Airborne sound absorption in porous materials involves complex mechanisms of converting mechanical acoustic energy into heat. In this work, the effective piezoelectric properties of polyethylene ferroelectret foams on sound absorption were investigated by comparable samples with and without the piezoelectric response. Corona poling and thermal annealing treatments were applied to the samples in order to enable and remove the piezoelectric property, respectively, while the microstructure and the mechanical properties remained substantially unchanged. The effective piezoelectric properties and airborne sound absorption coefficients of the polyethylene foam samples before and after material treatments were measured and analyzed. Our experimental results and theoretical analysis showed that the open-cell ferroelectret polymer foam with an effective piezoelectric property provides an additional electromechanical energy conversion mechanism to enhance the airborne acoustic absorption performance.

2.
Chemphyschem ; 14(9): 1934-42, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23649714

RESUMO

Magnetic iron oxide nanoparticles synthesized by coprecipitation and thermal decomposition yield largely monodisperse size distributions. The diameters of the coprecipitated particles measured by X-ray diffraction and transmission electron microscopy are between approximately 9 and 15 nm, whereas the diameters of thermally decomposed particles are in the range of 8 to 10 nm. Coprecipitated particles are indexed as magnetite-rich and thermally decomposed particles as maghemite-rich; however, both methods produce a mixture of magnetite and maghemite. Fourier transform IR spectra reveal that the nanoparticles are coated with at least two layers of oleic acid (OA) surfactant. The inner layer is postulated to be chemically adsorbed on the nanoparticle surface whereas the rest of the OA is physically adsorbed, as indicated by carboxyl O-H stretching modes above 3400 cm(-1). Differential thermal analysis (DTA) results indicate a double-stepped weight loss process, the lower-temperature step of which is assigned to condensation due to physically adsorbed or low-energy bonded OA moieties. Density functional calculations of Fe-O clusters, the inverse spinel cell, and isolated OA, as well as OA in bidentate linkage with ferrous and ferric atoms, suggest that the higher-temperature DTA stage could be further broken down into two regions: one in which condensation is due ferrous/ferrous- and/or ferrous/ferric-OA and the other due to condensation from ferrous/ferric- and ferric/ferric-OA complexes. The latter appear to form bonds with the OA carbonyl group of energy up to fivefold that of the bond formed by the ferrous/ferrous pairs. Molecular orbital populations indicate that such increased stability of the ferric/ferric pair is due to the contribution of the low-lying Fe(3+) t(2g) states into four bonding orbitals between -0.623 and -0.410 a.u.


Assuntos
Nanopartículas de Magnetita/química , Compostos Férricos/química , Compostos Ferrosos/química , Ácido Oleico/química , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA