Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38006172

RESUMO

Epoxy matrix composites reinforced with high-performance fibers, such as carbon, Kevlar, and glass, exhibit excellent specific stiffness and strength in many mechanical applications. However, these composites are disappointingly non-recyclable and are usually disposed of in landfill sites, with no realistic prospect for biodegradation in a reasonable time. In contrast, moldable composites with carbonized elastomeric matrices developed in the last decades possess attractive mechanical properties in final net-shape products and can also be incinerated or recycled. Many carbon and inorganic fillers have recently been evaluated to adjust the properties of carbonized elastomeric composites. Renewable organic fillers, such as human or animal hair, offer an attractive fibrous material with substantial potential for reinforcing composites with elastomeric matrices. Samples of unidirectional fiber composites (with hair volume fractions up to 7%) and quasi-isotropic short fiber composites (with hair volume fractions up to 20%) of human hair-reinforced nitrile butadiene rubbers (HH-NBRs) were produced in the peroxide-cured and carbonized states. The samples were characterized using scanning electron microscopy (SEM), Raman spectroscopy, and photoacoustic microscopy. Mechanical tests were performed under tension using a miniature universal testing machine. The expected effect of fiber reinforcement on the overall mechanical performance was demonstrated for both cured and carbonized composites. Considerable enhancement of the elastic modulus (up to ten times), ultimate tensile strength (up to three times), and damage tolerance was achieved. The evidence of satisfactory interfacial bonding between hair and rubber was confirmed via SEM imaging of fracture surfaces. The suitability of photoacoustic microscopy was assessed for 3D reconstructions of the fiber sub-system's spatial distribution and non-destructive testing.

2.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37047227

RESUMO

The study reveals the polymer-crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core-shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core-shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer-Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core-shell composite provides sustainable antibacterial activity against Staphylococcus aureus.


Assuntos
Grafite , Nanofibras , Grafite/farmacologia , Álcool de Polivinil , Dióxido de Silício , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bandagens , Nanofibras/uso terapêutico
3.
Sci Rep ; 13(1): 5518, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015973

RESUMO

Diatoms are single cell microalgae enclosed in silica exoskeletons (frustules) that provide inspiration for advanced hybrid nanostructure designs mimicking multi-scale porosity to achieve outstanding mechanical and optical properties. Interrogating the structure and properties of diatoms down to nanometer scale leads to breakthrough advances reported here in the nanomechanical characterization of Coscinodiscus oculus-iridis diatom pure silica frustules, as well as of air-dried and wet cells with organic content. Static and dynamic mode Atomic Force Microscopy (AFM) and in-SEM nanoindentation revealed the peculiarities of diatom response with separate contributions from material nanoscale behavior and membrane deformation of the entire valve. Significant differences in the nanomechanical properties of the different frustule layers were observed. Furthermore, the deformation response depends strongly on silica hydration and on the support from the internal organic content. The cyclic loading revealed that the average compliance of the silica frustule is 0.019 m/N and increases with increasing number of cycles. The structure-mechanical properties relationship has a direct impact on the vibrational properties of the frustule as a complex micrometer-sized mechanical system. Lessons from Nature's nanostructuring of diatoms open up pathways to new generations of nano- and microdevices for electronic, electromechanical, photonic, liquid, energy storage, and other applications.


Assuntos
Diatomáceas , Nanoestruturas , Diatomáceas/fisiologia , Nanoestruturas/química , Microscopia de Força Atômica , Dióxido de Silício/química , Vidro
4.
Bioengineering (Basel) ; 10(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36829768

RESUMO

In the present study, pins made from the novel Mg-2Zn-2Ga alloy were installed within the femoral bones of six Wistar rats. The level of bioresorption was assessed after 1, 3, and 6 months by radiography, histology, SEM, and EDX. Significant bioresorption was evident after 3 months, and complete dissolution of the pins occurred at 6 months after the installation. No pronounced gas cavities could be found at the pin installation sites throughout the postoperative period. The animals' blood parameters showed no signs of inflammation or toxication. These findings are sufficiently encouraging to motivate further research to broaden the experimental coverage to increase the number of observed animals and to conduct tests involving other, larger animals.

5.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559742

RESUMO

The reported study was devoted to the investigation of viscoelastic behavior for solid and porous ultra-high molecular weight polyethylene (UHMWPE) under compression. The obtained experimental stress curves were interpreted using a two-term Prony series to represent the superposition of two coexisting activation processes corresponding to long molecular (~160 s) and short structural (~20 s) time scales, respectively, leading to good statistical correlation with the observations. In the case of porous polymer, the internal strain redistribution during relaxation was quantified using digital image correlation (DIC) analysis. The strongly inhomogeneous deformation of the porous polymer was found not to affect the relaxation times. To illustrate the possibility of generalizing the results to three dimensions, X-ray tomography was used to examine the porous structure relaxation at the macro- and micro-scale levels. DIC analysis revealed positive correlation between the applied force and relative density. The apparent stiffness variation for UHMWPE foams with mixed open and closed cells was described using a newly proposed three-term expression. Furthermore, in situ tensile loading and X-ray scattering study was applied for isotropic solid UHMWPE specimens to investigate the evolution of internal structure and orientation during drawing and stress relaxation in another loading mode.

6.
Materials (Basel) ; 15(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363121

RESUMO

The development direction of bioresorbable fixing structures is currently very relevant because it corresponds to the priority areas in worldwide biotechnology development. Magnesium (Mg)-based alloys are gaining high levels of attention due to their promising potential use as the basis for fixating structures. These alloys can be an alternative to non-degradable metal implants in orthopedics, maxillofacial surgery, neurosurgery, and veterinary medicine. In our study, we formulated a Mg-2Zn-2Ga alloy, prepared pins, and analyzed their biodegradation level based on SEM (scanning electron microscopy) and EDX (energy-dispersive X-ray analysis) after carrying out an experimental study on rats. We assessed the resorption parameters 1, 3, and 6 months after surgery. In general, the biodegradation process was characterized by the systematic development of newly formed bone tissue. Our results showed that Mg-2Zn-2Ga magnesium alloys are suitable for clinical applications.

7.
Polymers (Basel) ; 14(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566962

RESUMO

This work evaluated the fracture toughness of the low-temperature carbonized elastomer-based composites filled with shungite and short carbon fibers. The effects of the carbonization temperature and filler content on the critical stress intensity factor (K1c) were examined. The K1c parameter was obtained using three-point bending tests for specimens with different l/b ratio (notch depth to sample thickness) ranging from 0.2 to 0.4. Reliable detection of the initiation and propagation of cracks was achieved using an acoustic sensor was attached to the samples during the bending test. The critical stress intensity factor was found to decrease linearly with increasing carbonization temperature. As the temperature increased from 280 to 380 °C, the K1c parameter was drastically reduced from about 5 to 1 MPa·m1/2 and was associated with intense outgassing during the carbonization step that resulted in sample porosity. The carbon fiber addition led to some incremental toughening; however, it reduced the statistical dispersion of the K1c values.

8.
Nanomaterials (Basel) ; 12(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35407353

RESUMO

Ga-ion micro-ring-core FIB-DIC evaluation of residual stresses in shot peened VT6 (Ti-6Al-4V) alloy was carried out and cross-validated against other non-destructive and semi-destructive residual stresses evaluation techniques, namely, the conventional sin2ψ X-ray diffraction and mechanical hole drilling. The Korsunsky FIB-DIC method of Ga-ion beam micro-ring-core milling within FIB-SEM with Digital Image Correlation (DIC) deformation analysis delivered spatial resolution down to a few micrometers, while the mechanical drilling of circular holes of ~2 mm diameter with laser speckle interferometry monitoring of strains gave a rough spatial resolution of a few millimeters. Good agreement was also found with the X-ray diffraction estimates of residual stress variation profiles as a function of depth. These results demonstrate that FIB-DIC provides rich information down to the micron scale, it also allows reliable estimation of macro-scale residual stresses.

9.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335811

RESUMO

Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA-PEG-SiO2@PVA-GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings.

10.
Polymers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925323

RESUMO

The structure of self-reinforced composites (SRCs) based on ultra-high molecular weight polyethylene (UHMWPE) was studied by means of Wide-Angle X-ray Scattering (WAXS), X-ray tomography, Raman spectroscopy, Scanning Electron Microscopy (SEM) and in situ tensile testing in combination with advanced processing tools to determine the correlation between the processing conditions, on one hand, and the molecular structure and mechanical properties, on the other. SRCs were fabricated by hot compaction of UHMWPE fibers at different pressure and temperature combinations without addition of polymer matrix or softener. It was found by WAXS that higher compaction temperatures led to more extensive melting of fibers with the corresponding reduction of the Herman's factor reflecting the degree of molecular orientation, while the increase of hot compaction pressure suppressed the melting of fibers within SRCs at a given temperature. X-ray tomography proved the absence of porosity while polarized light Raman spectroscopy measurements for both longitudinal and perpendicular fiber orientations showed qualitatively the anisotropy of SRC samples. SEM revealed that the matrix was formed by interlayers of molten polymer entrapped between fibers in SRCs. Moreover, in situ tensile tests demonstrated the increase of Young's modulus and tensile strength with increasing temperature.

11.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499359

RESUMO

Carbonized elastomer-based composites (CECs) possess a number of attractive features in terms of thermomechanical and electromechanical performance, durability in aggressive media and facile net-shape formability, but their relatively low ductility and strength limit their suitability for structural engineering applications. Prospective applications such as structural elements of micro-electro-mechanical systems MEMS can be envisaged since smaller principal dimensions reduce the susceptibility of components to residual stress accumulation during carbonization and to brittle fracture in general. We report the results of in situ in-SEM study of microdeformation and fracture behavior of CECs based on nitrile butadiene rubber (NBR) elastomeric matrices filled with carbon and silicon carbide. Nanostructured carbon composite materials were manufactured via compounding of elastomeric substance with carbon and SiC fillers using mixing rolling mill, vulcanization, and low-temperature carbonization. Double-edge notched tensile (DENT) specimens of vulcanized and carbonized elastomeric composites were subjected to in situ tensile testing in the chamber of the scanning electron microscope (SEM) Tescan Vega 3 using a Deben microtest 1 kN tensile stage. The series of acquired SEM images were analyzed by means of digital image correlation (DIC) using Ncorr open-source software to map the spatial distribution of strain. These maps were correlated with finite element modeling (FEM) simulations to refine the values of elastic moduli. Moreover, the elastic moduli were derived from unloading curve nanoindentation hardness measurements carried out using a NanoScan-4D tester and interpreted using the Oliver-Pharr method. Carbonization causes a significant increase of elastic moduli from 0.86 ± 0.07 GPa to 14.12 ± 1.20 GPa for the composite with graphite and carbon black fillers. Nanoindentation measurements yield somewhat lower values, namely, 0.25 ± 0.02 GPa and 9.83 ± 1.10 GPa before and after carbonization, respectively. The analysis of fractography images suggests that crack initiation, growth and propagation may occur both at the notch stress concentrator or relatively far from the notch. Possible causes of such response are discussed, namely, (1) residual stresses introduced by processing; (2) shape and size of fillers; and (3) the emanation and accumulation of gases in composites during carbonization.


Assuntos
Elastômeros/química , Nanocompostos/química , Carbono/química , Compostos Inorgânicos de Carbono/química , Simulação por Computador , Módulo de Elasticidade , Análise de Elementos Finitos , Dureza , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Compostos de Silício/química , Estresse Mecânico , Resistência à Tração
12.
Polymers (Basel) ; 12(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171935

RESUMO

Porous ultra-high molecular weight polyethylene (UHMWPE) is a high-performance bioinert polymer used in cranio-facial reconstructive surgery in procedures where relatively low mechanical stresses arise. As an alternative to much stiffer and more costly polyether-ether-ketone (PEEK) polymer, UHMWPE is finding further wide applications in hierarchically structured hybrids for advanced implants mimicking cartilage, cortical and trabecular bone tissues within a single component. The mechanical behaviour of open-cell UHMWPE sponges obtained through sacrificial desalination of hot compression-moulded UHMWPE-NaCl powder mixtures shows a complex dependence on the fabrication parameters and microstructural features. In particular, similarly to other porous media, it displays significant inhomogeneity of strain that readily localises within deformation bands that govern the overall response. In this article, we report advances in the development of accurate experimental techniques for operando studies of the structure-performance relationship applied to the porous UHMWPE medium with pore sizes of about 250 µm that are most well-suited for live cell proliferation and fast vascularization of implants. Samples of UHMWPE sponges were subjected to in situ compression using a micromechanical testing device within Scanning Electron Microscope (SEM) chamber, allowing the acquisition of high-resolution image sequences for Digital Image Correlation (DIC) analysis. Special masking and image processing algorithms were developed and applied to reveal the evolution of pore size and aspect ratio. Key structural evolution and deformation localisation phenomena were identified at both macro- and micro-structural levels in the elastic and plastic regimes. The motion of pore walls was quantitatively described, and the presence and influence of strain localisation zones were revealed and analysed using DIC technique.

13.
Materials (Basel) ; 12(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288424

RESUMO

Ultra-high molecular weight polyethylene (UHMWPE) is a bioinert polymer that is widely used as bulk material in reconstructive surgery for structural replacements of bone and cartilage. Porous UHMWPE can be used for trabecular bone tissue replacement, and it can be used in living cell studies as bioinert 3D substrate permeable to physiological fluids. It is important to develop techniques to govern the morphology of open-cell porous UHMWPE structures (pore size, shape, and connectivity), since this allows control over proliferation and differentiation in living cell populations. We report experimental results on the mechanical behavior of porous open-cell UHMWPE obtained through sacrificial removal (desalination) of hot-molded UHMWPE-NaCl powder mixtures with pore sizes in the range 75 µm to 500 µm. The structures were characterized using SEM and mechanically tested under static compression and dynamic mechanical analysis (DMA), bending, and tensile tests. Apparent elastic modulus and complex modulus were in the range of 1.2 to 2.5 MPa showing a weak dependence on cell size. Densification under compression caused the apparent elastic modulus to increase to 130 MPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...