Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786052

RESUMO

Huntington's disease (HD) arises from expanded CAG repeats in exon 1 of the Huntingtin (HTT) gene. The resultant misfolded HTT protein accumulates within neuronal cells, negatively impacting their function and survival. Ultimately, HTT accumulation results in cell death, causing the development of HD. A nonhuman primate (NHP) HD model would provide important insight into disease development and the generation of novel therapies due to their genetic and physiological similarity to humans. For this purpose, we tested CRISPR/Cas9 and a single-stranded DNA (ssDNA) containing expanded CAG repeats in introducing an expanded CAG repeat into the HTT gene in rhesus macaque embryos. Analyses were conducted on arrested embryos and trophectoderm (TE) cells biopsied from blastocysts to assess the insertion of the ssDNA into the HTT gene. Genotyping results demonstrated that 15% of the embryos carried an expanded CAG repeat. The integration of an expanded CAG repeat region was successfully identified in five blastocysts, which were cryopreserved for NHP HD animal production. Some off-target events were observed in biopsies from the cryopreserved blastocysts. NHP embryos were successfully produced, which will help to establish an NHP HD model and, ultimately, may serve as a vital tool for better understanding HD's pathology and developing novel treatments.


Assuntos
Proteína Huntingtina , Macaca mulatta , Animais , Macaca mulatta/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Blastocisto/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Embrião de Mamíferos/metabolismo , Sistemas CRISPR-Cas/genética , Feminino , Modelos Animais de Doenças
2.
Sci Rep ; 12(1): 10036, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710827

RESUMO

Mutations in the MYO7A gene lead to Usher syndrome type 1B (USH1B), a disease characterized by congenital deafness, vision loss, and balance impairment. To create a nonhuman primate (NHP) USH1B model, CRISPR/Cas9 was used to disrupt MYO7A in rhesus macaque zygotes. The targeting efficiency of Cas9 mRNA and hybridized crRNA-tracrRNA (hyb-gRNA) was compared to Cas9 nuclease (Nuc) protein and synthetic single guide (sg)RNAs. Nuc/sgRNA injection led to higher editing efficiencies relative to mRNA/hyb-gRNAs. Mutations were assessed by preimplantation genetic testing (PGT) and those with the desired mutations were transferred into surrogates. A pregnancy was established from an embryo where 92.1% of the PGT sequencing reads possessed a single G insertion that leads to a premature stop codon. Analysis of single peripheral blood leukocytes from the infant revealed that half the cells possessed the homozygous single base insertion and the remaining cells had the wild-type MYO7A sequence. The infant showed sensitive auditory thresholds beginning at 3 months. Although further optimization is needed, our studies demonstrate that it is feasible to use CRISPR technologies for creating NHP models of human diseases.


Assuntos
Síndromes de Usher , Animais , Humanos , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes , Macaca mulatta/genética , Macaca mulatta/metabolismo , RNA Mensageiro , Síndromes de Usher/genética , Pequeno RNA não Traduzido/metabolismo
3.
Curr Biol ; 32(4): 878-888.e8, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34919808

RESUMO

Endosymbioses influence host physiology, reproduction, and fitness, but these relationships require efficient microbe transmission between host generations to persist. Maternally transmitted Wolbachia are the most common known endosymbionts,1 but their frequencies vary widely within and among host populations for unknown reasons.2,3 Here, we integrate genomic, cellular, and phenotypic analyses with mathematical models to provide an unexpectedly simple explanation for global wMel Wolbachia prevalence in Drosophila melanogaster. Cooling temperatures decrease wMel cellular abundance at a key stage of host oogenesis, producing temperature-dependent variation in maternal transmission that plausibly explains latitudinal clines of wMel frequencies on multiple continents. wMel sampled from a temperate climate targets the germline more efficiently in the cold than a recently differentiated tropical variant (∼2,200 years ago), indicative of rapid wMel adaptation to climate. Genomic analyses identify a very narrow list of wMel alleles-most notably, a derived stop codon in the major Wolbachia surface protein WspB-that underlie thermal sensitivity of cellular Wolbachia abundance and covary with temperature globally. Decoupling temperate wMel and host genomes further reduces transmission in the cold, a pattern that is characteristic of host-microbe co-adaptation to a temperate climate. Complex interactions among Wolbachia, hosts, and the environment (GxGxE) mediate wMel cellular abundance and maternal transmission, implicating temperature as a key determinant of Wolbachia spread and equilibrium frequencies, in conjunction with Wolbachia effects on host fitness and reproduction.4,5 Our results motivate the strategic use of locally selected wMel variants for Wolbachia-based biocontrol efforts, which protect millions of individuals from arboviruses that cause human disease.6.


Assuntos
Drosophila melanogaster , Wolbachia , Animais , Drosophila melanogaster/genética , Interações entre Hospedeiro e Microrganismos , Prevalência , Temperatura , Wolbachia/genética
4.
F S Sci ; 2(4): 365-375, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34970648

RESUMO

OBJECTIVE: To demonstrate that functional spermatids can be derived in vitro from nonhuman primate pluripotent stem cells. DESIGN: Green fluorescent protein-labeled, rhesus macaque nonhuman primate embryonic stem cells (nhpESCs) were differentiated into advanced male germ cell lineages using a modified serum-free spermatogonial stem cell culture medium. In vitro-derived round spermatid-like cells (rSLCs) from differentiated nhpESCs were assessed for their ability to fertilize rhesus oocytes by intracytoplasmic sperm(atid) injection. SETTING: Multiple academic laboratory settings. PATIENTS: Not applicable. INTERVENTIONS: Intracytoplasmic sperm(atid) injection of in vitro-derived spermatids from nhpESCs into rhesus macaque oocytes. MAIN OUTCOME MEASURES: Differentiation into spermatogenic cell lineages was measured through multiple assessments including ribonucleic acid sequencing and immunocytochemistry for various spermatogenic markers. In vitro spermatids were assessed for their ability to fertilize oocytes by intracytoplasmic sperm(atid) injection by assessing early fertilization events such as spermatid deoxyribonucleic acid decondensation and pronucleus formation/apposition. Preimplantation embryo development from the one-cell zygote stage to the blastocyst stage was also assessed. RESULTS: Nonhuman primate embryonic stem cells can be differentiated into advanced germ cell lineages, including haploid rSLCs. These rSLCs undergo deoxyribonucleic acid decondensation and pronucleus formation/apposition when microinjected into rhesus macaque mature oocytes, which, after artificial activation and coinjection of ten-eleven translocation 3 protein, undergo embryonic divisions with approximately 12% developing successfully into expanded blastocysts. CONCLUSIONS: This work demonstrates that rSLCs, generated in vitro from primate pluripotent stem cells, mimic many of the capabilities of in vivo round spermatids and perform events essential for preimplantation development. To our knowledge, this work represents, for the first time, that functional spermatid-like cells can be derived in vitro from primate pluripotent stem cells.


Assuntos
Injeções de Esperma Intracitoplásmicas , Espermátides , Animais , Blastocisto , DNA , Desenvolvimento Embrionário , Células-Tronco Embrionárias , Feminino , Fertilização , Humanos , Macaca mulatta , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...